Answer

Verified

383.7k+ views

**Hint:**In this question, we need to find the value of $\cos \left( -{{1710}^{\circ }} \right)$. For this, we will first use the property of $\cos \left( -\theta \right)=\cos \theta $ to ease our calculation. After that, we will change the given angle from degrees to radian using the formula ${{1}^{\circ }}=\dfrac{\pi }{180}\text{radians}$. After that, we will try to find the required value using formula:

(I) cosine repeats its function after an interval of $2\pi $.

(II) $\cos {{90}^{\circ }}=0$ from the trigonometric ratio table.

**Complete step-by-step solution:**

Here we are given the function as $\cos \left( -{{1710}^{\circ }} \right)$. We need to find its value. For this, let's first simplify the angle of cosine function. We know that, $\cos \left( -\theta \right)=\cos \theta $ so our expression becomes $\cos \left( -{{1710}^{\circ }} \right)=\cos \left( {{1710}^{\circ }} \right)$.

We are given the angle in degrees, to easily calculate the values let us first change the angle from degrees to radian. Formula for changing degrees to radian is given by,

${{1}^{\circ }}=\dfrac{\pi }{180}\text{radians}$.

Therefore, ${{1710}^{\circ }}=\dfrac{1710\pi }{180}\text{radians}\Rightarrow {{1710}^{\circ }}=\dfrac{171\pi }{18}\text{radians}$.

Dividing the numerator and the denominator by 9 we get, ${{1710}^{\circ }}=\dfrac{19\pi }{2}\text{radians}$.

Hence our expression becomes $\cos \left( -{{1710}^{\circ }} \right)=\cos \left( \dfrac{19\pi }{2} \right)$.

Now we know that $\dfrac{19\pi }{2}$ can be written as $10\pi -\dfrac{\pi }{2}$ (Because $10\pi -\dfrac{\pi }{2}=\dfrac{20\pi -\pi }{2}=\dfrac{19\pi }{2}$)

So our expression becomes $\cos \left( -{{1710}^{\circ }} \right)=\cos \left( 10\pi -\dfrac{\pi }{2} \right)$.

As we know that cosine function repeats itself after every $2\pi $ which means $\cos \theta =\cos \left( 2\pi +\theta \right)=\cos \left( 4\pi +\theta \right)=\cdots \cdots \cdots =\cos \left( 2n+\theta \right)$ where n is any integer. So, we can apply this here as $10\pi =5\times 2\pi $.

Hence we can say $\cos \left( -{{1710}^{\circ }} \right)=\cos \left( -\dfrac{\pi }{2} \right)$.

Now let us apply $\cos \left( -\theta \right)=\cos \theta $ again we get, $\cos \left( -{{1710}^{\circ }} \right)=\cos \dfrac{\pi }{2}$.

From the trigonometric ratio table we know that $\cos \dfrac{\pi }{2}={{0}^{\circ }}$ therefore we get $\cos \left( -{{1710}^{\circ }} \right)=0$.

**Hence the required value of $\cos \left( -{{1710}^{\circ }} \right)$ is 0.**

**Note:**Students should keep in mind all the trigonometric properties for solving this type of sums. They should note that, not every trigonometric function absorbs the negative sign as cosine does. Try to convert degrees to radian to calculate the angle easily. Keep in mind the trigonometric ratio table for easily finding values of such function.

Recently Updated Pages

What are the Advantages and Disadvantages of Algorithm

How do you write 0125 in scientific notation class 0 maths CBSE

The marks obtained by 50 students of class 10 out of class 11 maths CBSE

Out of 30 students in a class 6 like football 12 like class 7 maths CBSE

Explain the law of constant proportion in a simple way

How do you simplify left 5 3i right2 class 12 maths CBSE

Trending doubts

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write the 6 fundamental rights of India and explain in detail

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE