Answer
Verified
493.2k+ views
Hint: To find the value of given expression, use the identity relating \[\cos x\] and \[\sin x\] as \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. Rearrange the terms and solve the expression using trigonometric identities to calculate the value of the given expression.
Complete step-by-step answer:
We know that \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\]. We have to calculate the value of \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\].
We will use the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] relating \[\cos x\] and \[\sin x\].
We can rewrite the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] as \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].
Substituting the equation \[\cos x=\sqrt{1-{{\sin }^{2}}x}\] in the expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\], we have \[{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{6}}-4{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{4}}+8{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{2}}\].
Further simplifying the above expression, we have \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\].
We know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] and \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Thus, expanding the expression \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\], we have \[1-3{{\sin }^{2}}x+3{{\sin }^{4}}x-{{\sin }^{6}}x-4-4{{\sin }^{4}}x+8{{\sin }^{2}}x+8-8{{\sin }^{2}}x\].
So, we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x+5.....\left( 1 \right)\].
We can rewrite the expression \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\] as \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\].
Squaring the equation \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\] on both sides, we have \[{{\left( \sin x+{{\sin }^{3}}x \right)}^{2}}={{\left( 1-{{\sin }^{2}}x \right)}^{2}}\].
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Thus, we have \[{{\sin }^{2}}x+2{{\sin }^{4}}x+{{\sin }^{6}}x=1-2{{\sin }^{2}}x+{{\sin }^{4}}x\].
Further simplifying the above expression, we have \[-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x=-1.....\left( 2 \right)\].
Substituting the value of equation (2) in equation (1), we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=5-1=4\].
Hence, the value of expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\] is 4, which is option (c).
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We know that \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\]. We have to calculate the value of \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\].
We will use the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] relating \[\cos x\] and \[\sin x\].
We can rewrite the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] as \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].
Substituting the equation \[\cos x=\sqrt{1-{{\sin }^{2}}x}\] in the expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\], we have \[{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{6}}-4{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{4}}+8{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{2}}\].
Further simplifying the above expression, we have \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\].
We know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] and \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Thus, expanding the expression \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\], we have \[1-3{{\sin }^{2}}x+3{{\sin }^{4}}x-{{\sin }^{6}}x-4-4{{\sin }^{4}}x+8{{\sin }^{2}}x+8-8{{\sin }^{2}}x\].
So, we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x+5.....\left( 1 \right)\].
We can rewrite the expression \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\] as \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\].
Squaring the equation \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\] on both sides, we have \[{{\left( \sin x+{{\sin }^{3}}x \right)}^{2}}={{\left( 1-{{\sin }^{2}}x \right)}^{2}}\].
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Thus, we have \[{{\sin }^{2}}x+2{{\sin }^{4}}x+{{\sin }^{6}}x=1-2{{\sin }^{2}}x+{{\sin }^{4}}x\].
Further simplifying the above expression, we have \[-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x=-1.....\left( 2 \right)\].
Substituting the value of equation (2) in equation (1), we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=5-1=4\].
Hence, the value of expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\] is 4, which is option (c).
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE