# Find the value of \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\] , If \[\sin x+{{\sin}^ {2}}x+{{\sin }^{3}}x=1\],

(a) 0

(b) 2

(c) 4

(d) 8

Last updated date: 22nd Mar 2023

•

Total views: 304.8k

•

Views today: 8.84k

Answer

Verified

304.8k+ views

Hint: To find the value of given expression, use the identity relating \[\cos x\] and \[\sin x\] as \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. Rearrange the terms and solve the expression using trigonometric identities to calculate the value of the given expression.

Complete step-by-step answer:

We know that \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\]. We have to calculate the value of \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\].

We will use the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] relating \[\cos x\] and \[\sin x\].

We can rewrite the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] as \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].

Substituting the equation \[\cos x=\sqrt{1-{{\sin }^{2}}x}\] in the expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\], we have \[{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{6}}-4{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{4}}+8{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{2}}\].

Further simplifying the above expression, we have \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\].

We know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] and \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].

Thus, expanding the expression \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\], we have \[1-3{{\sin }^{2}}x+3{{\sin }^{4}}x-{{\sin }^{6}}x-4-4{{\sin }^{4}}x+8{{\sin }^{2}}x+8-8{{\sin }^{2}}x\].

So, we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x+5.....\left( 1 \right)\].

We can rewrite the expression \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\] as \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\].

Squaring the equation \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\] on both sides, we have \[{{\left( \sin x+{{\sin }^{3}}x \right)}^{2}}={{\left( 1-{{\sin }^{2}}x \right)}^{2}}\].

We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].

Thus, we have \[{{\sin }^{2}}x+2{{\sin }^{4}}x+{{\sin }^{6}}x=1-2{{\sin }^{2}}x+{{\sin }^{4}}x\].

Further simplifying the above expression, we have \[-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x=-1.....\left( 2 \right)\].

Substituting the value of equation (2) in equation (1), we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=5-1=4\].

Hence, the value of expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\] is 4, which is option (c).

Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.

Complete step-by-step answer:

We know that \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\]. We have to calculate the value of \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\].

We will use the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] relating \[\cos x\] and \[\sin x\].

We can rewrite the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] as \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].

Substituting the equation \[\cos x=\sqrt{1-{{\sin }^{2}}x}\] in the expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\], we have \[{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{6}}-4{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{4}}+8{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{2}}\].

Further simplifying the above expression, we have \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\].

We know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] and \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].

Thus, expanding the expression \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\], we have \[1-3{{\sin }^{2}}x+3{{\sin }^{4}}x-{{\sin }^{6}}x-4-4{{\sin }^{4}}x+8{{\sin }^{2}}x+8-8{{\sin }^{2}}x\].

So, we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x+5.....\left( 1 \right)\].

We can rewrite the expression \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\] as \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\].

Squaring the equation \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\] on both sides, we have \[{{\left( \sin x+{{\sin }^{3}}x \right)}^{2}}={{\left( 1-{{\sin }^{2}}x \right)}^{2}}\].

We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].

Thus, we have \[{{\sin }^{2}}x+2{{\sin }^{4}}x+{{\sin }^{6}}x=1-2{{\sin }^{2}}x+{{\sin }^{4}}x\].

Further simplifying the above expression, we have \[-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x=-1.....\left( 2 \right)\].

Substituting the value of equation (2) in equation (1), we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=5-1=4\].

Hence, the value of expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\] is 4, which is option (c).

Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE