
Find the value of \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\] , If \[\sin x+{{\sin}^ {2}}x+{{\sin }^{3}}x=1\],
(a) 0
(b) 2
(c) 4
(d) 8
Answer
606k+ views
Hint: To find the value of given expression, use the identity relating \[\cos x\] and \[\sin x\] as \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. Rearrange the terms and solve the expression using trigonometric identities to calculate the value of the given expression.
Complete step-by-step answer:
We know that \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\]. We have to calculate the value of \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\].
We will use the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] relating \[\cos x\] and \[\sin x\].
We can rewrite the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] as \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].
Substituting the equation \[\cos x=\sqrt{1-{{\sin }^{2}}x}\] in the expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\], we have \[{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{6}}-4{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{4}}+8{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{2}}\].
Further simplifying the above expression, we have \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\].
We know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] and \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Thus, expanding the expression \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\], we have \[1-3{{\sin }^{2}}x+3{{\sin }^{4}}x-{{\sin }^{6}}x-4-4{{\sin }^{4}}x+8{{\sin }^{2}}x+8-8{{\sin }^{2}}x\].
So, we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x+5.....\left( 1 \right)\].
We can rewrite the expression \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\] as \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\].
Squaring the equation \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\] on both sides, we have \[{{\left( \sin x+{{\sin }^{3}}x \right)}^{2}}={{\left( 1-{{\sin }^{2}}x \right)}^{2}}\].
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Thus, we have \[{{\sin }^{2}}x+2{{\sin }^{4}}x+{{\sin }^{6}}x=1-2{{\sin }^{2}}x+{{\sin }^{4}}x\].
Further simplifying the above expression, we have \[-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x=-1.....\left( 2 \right)\].
Substituting the value of equation (2) in equation (1), we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=5-1=4\].
Hence, the value of expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\] is 4, which is option (c).
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We know that \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\]. We have to calculate the value of \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\].
We will use the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] relating \[\cos x\] and \[\sin x\].
We can rewrite the identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] as \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].
Substituting the equation \[\cos x=\sqrt{1-{{\sin }^{2}}x}\] in the expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\], we have \[{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{6}}-4{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{4}}+8{{\left( \sqrt{1-{{\sin }^{2}}x} \right)}^{2}}\].
Further simplifying the above expression, we have \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\].
We know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}\] and \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Thus, expanding the expression \[{{\left( 1-{{\sin }^{2}}x \right)}^{3}}-4{{\left( 1-{{\sin }^{2}}x \right)}^{2}}+8\left( 1-{{\sin }^{2}}x \right)\], we have \[1-3{{\sin }^{2}}x+3{{\sin }^{4}}x-{{\sin }^{6}}x-4-4{{\sin }^{4}}x+8{{\sin }^{2}}x+8-8{{\sin }^{2}}x\].
So, we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x+5.....\left( 1 \right)\].
We can rewrite the expression \[\sin x+{{\sin }^{2}}x+{{\sin }^{3}}x=1\] as \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\].
Squaring the equation \[\sin x+{{\sin }^{3}}x=1-{{\sin }^{2}}x\] on both sides, we have \[{{\left( \sin x+{{\sin }^{3}}x \right)}^{2}}={{\left( 1-{{\sin }^{2}}x \right)}^{2}}\].
We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Thus, we have \[{{\sin }^{2}}x+2{{\sin }^{4}}x+{{\sin }^{6}}x=1-2{{\sin }^{2}}x+{{\sin }^{4}}x\].
Further simplifying the above expression, we have \[-{{\sin }^{6}}x-{{\sin }^{4}}x-3{{\sin }^{2}}x=-1.....\left( 2 \right)\].
Substituting the value of equation (2) in equation (1), we have \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x=5-1=4\].
Hence, the value of expression \[{{\cos }^{6}}x-4{{\cos }^{4}}x+8{{\cos }^{2}}x\] is 4, which is option (c).
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

