Courses
Courses for Kids
Free study material
Free LIVE classes
More
LIVE
Join Vedantu’s FREE Mastercalss

Find the value of $\cos {36^0} - \cos {72^0}$?

Answer
VerifiedVerified
363.3k+ views
Hint – In this question we have to find the value of the given expression. The basic trigonometric identities like $\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right)$, along with the algebraic identities will help will in simplifying the given expression.

“Complete step-by-step answer:”
Given equation is
$\cos {36^0} - \cos {72^0}$
As we know $\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right)$ so, use this property in above equation we have,
$ \Rightarrow \cos {36^0} - \cos {72^0} = 2\sin \left( {\dfrac{{{{36}^0} + {{72}^0}}}{2}} \right)\sin \left( {\dfrac{{{{72}^0} - {{36}^0}}}{2}} \right)$
Now simplify the above equation we have,
$ \Rightarrow 2\sin \left( {\dfrac{{{{36}^0} + {{72}^0}}}{2}} \right)\sin \left( {\dfrac{{{{72}^0} - {{36}^0}}}{2}} \right) = 2\sin \left( {\dfrac{{{{108}^0}}}{2}} \right)\sin \left( {\dfrac{{{{36}^0}}}{2}} \right) = 2\sin {54^0}\sin {18^0}$
Now we know that $\sin {54^0} = \dfrac{{\sqrt 5 + 1}}{4},{\text{ }}\sin {18^0} = \dfrac{{\sqrt 5 - 1}}{4}$ so, substitute this value in above equation we have,
$ \Rightarrow 2\sin {54^0}\sin {18^0} = 2\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)$
Now simplify this using property $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$.
$ \Rightarrow 2\sin {54^0}\sin {18^0} = 2\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right) = 2\left( {\dfrac{{5 - 1}}{{16}}} \right) = 2\left( {\dfrac{4}{{16}}} \right) = \dfrac{2}{4} = \dfrac{1}{2}$
$ \Rightarrow \cos {36^0} - \cos {72^0} = \dfrac{1}{2}$

Note – Whenever we face such types of questions the key concept is simply to have the gist of basic trigonometric identities, application of these identities combined with algebraic identities helps simplify such trigonometry problems and will get you on the right track to reach the answer.
Last updated date: 27th Sep 2023
Total views: 363.3k
Views today: 10.63k
Trending doubts