Answer
Verified
366.3k+ views
Hint: The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae. All the trigonometric formulae, rules and identities must be remembered by heart before solving such a complex question. Basic algebraic rules and simplification techniques are to be kept in mind while doing simplification in the given problem.
Complete step-by-step answer:
In the given problem, we have to find the value of the trigonometric expression $\cos {10^ \circ } + \cos {110^ \circ } + \cos {130^ \circ }$.
We can simplify the trigonometric expression given to us by using the trigonometric formula involving the sum of two cosines of different angles. First, we have to group the cosine functions on which we will apply the identity. So, we get,
$ \Rightarrow \left( {\cos {{10}^ \circ } + \cos {{110}^ \circ }} \right) + \cos {130^ \circ }$
Now, using the trigonometric identity $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ , we get,
$ \Rightarrow 2\cos \left( {\dfrac{{{{10}^ \circ } + {{110}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{10}^ \circ } - {{110}^ \circ }}}{2}} \right) + \cos {130^ \circ }$
Simplifying the expression, we get,
$ \Rightarrow 2\cos \left( {\dfrac{{{{120}^ \circ }}}{2}} \right)\cos \left( { - \dfrac{{{{100}^ \circ }}}{2}} \right) + \cos {130^ \circ }$
$ \Rightarrow 2\cos \left( {{{60}^ \circ }} \right)\cos \left( { - {{50}^ \circ }} \right) + \cos {130^ \circ }$
Now, we know that $\cos \left( { - x} \right) = \cos x$. So, using this in the expression, we get,
$ \Rightarrow 2\cos {60^ \circ }\cos {50^ \circ } + \cos {130^ \circ }$
We also know that the value of $\cos {60^ \circ }$ as $\left( {\dfrac{1}{2}} \right)$. So, we get,
$ \Rightarrow 2 \times \dfrac{1}{2}\cos {50^ \circ } + \cos {130^ \circ }$
Canceling the common factors in numerator and denominator and using the trigonometric formula $\cos \left( {{{180}^ \circ } - x} \right) = - \cos x$, we get,
$ \Rightarrow \cos {50^ \circ } + \cos {130^ \circ }$
We can write \[{130^ \circ }\] as \[{180^ \circ } - {50^ \circ }\] . So, we get,
$ \Rightarrow \cos {50^ \circ } + \cos \left( {{{180}^ \circ } - {{50}^ \circ }} \right)$
\[ \Rightarrow \cos {50^ \circ } - \cos {50^ \circ }\]
So, cancelling the like terms with opposite signs, we get,
\[ \Rightarrow 0\]
Hence, the value of $\cos {10^ \circ } + \cos {110^ \circ } + \cos {130^ \circ }$ is zero.
Note: Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. However, questions involving this type of simplification of trigonometric ratios may also have multiple interconvertible answers.
Complete step-by-step answer:
In the given problem, we have to find the value of the trigonometric expression $\cos {10^ \circ } + \cos {110^ \circ } + \cos {130^ \circ }$.
We can simplify the trigonometric expression given to us by using the trigonometric formula involving the sum of two cosines of different angles. First, we have to group the cosine functions on which we will apply the identity. So, we get,
$ \Rightarrow \left( {\cos {{10}^ \circ } + \cos {{110}^ \circ }} \right) + \cos {130^ \circ }$
Now, using the trigonometric identity $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ , we get,
$ \Rightarrow 2\cos \left( {\dfrac{{{{10}^ \circ } + {{110}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{10}^ \circ } - {{110}^ \circ }}}{2}} \right) + \cos {130^ \circ }$
Simplifying the expression, we get,
$ \Rightarrow 2\cos \left( {\dfrac{{{{120}^ \circ }}}{2}} \right)\cos \left( { - \dfrac{{{{100}^ \circ }}}{2}} \right) + \cos {130^ \circ }$
$ \Rightarrow 2\cos \left( {{{60}^ \circ }} \right)\cos \left( { - {{50}^ \circ }} \right) + \cos {130^ \circ }$
Now, we know that $\cos \left( { - x} \right) = \cos x$. So, using this in the expression, we get,
$ \Rightarrow 2\cos {60^ \circ }\cos {50^ \circ } + \cos {130^ \circ }$
We also know that the value of $\cos {60^ \circ }$ as $\left( {\dfrac{1}{2}} \right)$. So, we get,
$ \Rightarrow 2 \times \dfrac{1}{2}\cos {50^ \circ } + \cos {130^ \circ }$
Canceling the common factors in numerator and denominator and using the trigonometric formula $\cos \left( {{{180}^ \circ } - x} \right) = - \cos x$, we get,
$ \Rightarrow \cos {50^ \circ } + \cos {130^ \circ }$
We can write \[{130^ \circ }\] as \[{180^ \circ } - {50^ \circ }\] . So, we get,
$ \Rightarrow \cos {50^ \circ } + \cos \left( {{{180}^ \circ } - {{50}^ \circ }} \right)$
\[ \Rightarrow \cos {50^ \circ } - \cos {50^ \circ }\]
So, cancelling the like terms with opposite signs, we get,
\[ \Rightarrow 0\]
Hence, the value of $\cos {10^ \circ } + \cos {110^ \circ } + \cos {130^ \circ }$ is zero.
Note: Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. However, questions involving this type of simplification of trigonometric ratios may also have multiple interconvertible answers.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE