Answer
Verified
405.9k+ views
Hint: Now to solve the expression we will first expand the whole equation by using the formula $\dfrac{n!}{r!\left( n-r \right)!}$ . Now once we have expanded we will simplify each term by cancelling denominator and numerator. Hence we will simplify the terms and find the value of the given expression.
Complete step by step solution:
Hence the answer of the given equation is zero.
Note: Note that here we have used 0! = 1. This is the standard value of 0!. Now to obtain this value we can consider that $n!=n\times \left( n-1 \right)!$ . Substituting n = 1 in the equation we get, 0! = 1. Hence the value of 0! is the same as 1! = 1.
Complete step by step solution:
Now first let us understand the concept of the number $^{n}{{C}_{r}}$. To understand it we must first understand the factorial of a number. Now $n!$ is defined as $n\times \left( n-1 \right)\times \left( n-2 \right)\times \left( n-3 \right)\times ...\times 3\times 2\times 1$.
Let us see an example. Consider we want to find the value of 5!.
Hence we write it as 5! = 5 × 4 × 3 × 2 × 1 = 120.
Hence the value of 5! = 120.
The number n! gives the number of arrangements of n objects into n places.Now suppose we have n objects and we want to select r objects among them. Then the number of possible ways to do so is given by the number $^{n}{{C}_{r}}$ .
Now the number $^{n}{{C}_{r}}$ is defined as $\dfrac{n!}{r!\left( n-r \right)!}$. Let us take an example to understand this.Suppose we have 5 different balls and we want to select 3 balls out of those then the number of ways to do so is $\dfrac{5!}{\left( 5-3 \right)!3!}=\dfrac{5!}{2!3!}=\dfrac{5\times 4\times 3!}{3!\times \left( 2 \right)}=10$ .
Now consider the given series ${}^{6}{{C}_{0}}{{.}^{12}}{{C}_{6}}{{-}^{6}}{{C}_{1}}{{.}^{11}}{{C}_{6}}{{+}^{6}}{{C}_{2}}{{.}^{10}}{{C}_{6}}{{-}^{6}}{{C}_{3}}{{.}^{9}}{{C}_{6}}{{+}^{6}}{{C}_{4}}{{.}^{8}}{{C}_{6}}{{-}^{6}}{{C}_{5}}{{.}^{7}}{{C}_{6}}{{+}^{6}}{{C}_{6}}{{.}^{6}}{{C}_{6}}$
Hence now let us expand the series by using the formula $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
\[\dfrac{6!}{6!0!}\times \dfrac{12!}{6!6!}-\dfrac{6!}{1!5!}\times \dfrac{11!}{6!5!}+\dfrac{6!}{2!4!}\times \dfrac{10!}{6!4!}-\dfrac{6!}{3!3!}\times \dfrac{9!}{6!3!}+\dfrac{6!}{4!2!}\times \dfrac{8!}{6!2!}-\dfrac{6!}{5!1!}\dfrac{7!}{6!1!}+\dfrac{6!}{6!0!}\times \dfrac{6!}{6!} \]
\[\Rightarrow \dfrac{1}{6!}\times \dfrac{12!}{6!}-\dfrac{1}{5!}\times \dfrac{11!}{5!}+\dfrac{1}{2!4!}\times \dfrac{10!}{4!}-\dfrac{1}{3!3!}\times \dfrac{9!}{3!}+\dfrac{1}{4!2!}\times \dfrac{8!}{2!}-\dfrac{1}{5!1!}\dfrac{7!}{1!}+1 \]
\[\Rightarrow \dfrac{12\times 11...\times 8\times 7\times 6!}{6!\times 6!}-\dfrac{11\times 10\times ...\times 6\times 5!}{5!\times 5!}+\dfrac{10\times 9\times ...\times 6\times 5\times 4!}{2!\times 4!\times 4!}-\dfrac{9\times 8\times ...\times 4\times 3!}{3!3!3!}+\dfrac{8\times 7\times ...\times 4!}{2!2!4!}-\dfrac{7\times 6\times 5!}{5!} \]
\[\Rightarrow \dfrac{12\times 11\times ...\times 8\times 7}{6!}-\dfrac{11\times 10\times 9\times 8\times 7\times 6}{5!}+\dfrac{10\times 9\times 8\times 7\times 6\times 5}{2!\times 4!}-\dfrac{9\times 8\times 7\times 6\times 5\times 4}{3!3!}+\dfrac{8\times 7\times 6\times 5}{2!2!}-\dfrac{7\times 6}{1} \]
\[\Rightarrow \dfrac{12\times 11\times ...\times 8\times 7}{6\times 5\times 4\times 3\times 2}-\dfrac{11\times 10\times 9\times 8\times 7\times 6}{5\times 4\times 3\times 2}+\dfrac{10\times 9\times 8\times 7\times 6\times 5}{4\times 3\times 2\times 2}-\dfrac{9\times 8\times 7\times 6\times 5\times 4}{6\times 6}+\dfrac{8\times 7\times 6\times 5}{4}-\dfrac{42}{1} \]
\[\Rightarrow \dfrac{2\times 11\times 3\times 2\times 7}{1}-\dfrac{11\times 2\times 9\times 2\times 7}{1}+\dfrac{10\times 9\times 7\times 5}{1}-\dfrac{3\times 4\times 7\times 5\times 4}{1}+\dfrac{2\times 7\times 6\times 5}{1}-\dfrac{42}{1} \]
\[\Rightarrow 924-2772+3150-1680+420-42 \]
\[\Rightarrow 0 \]
Note: Note that here we have used 0! = 1. This is the standard value of 0!. Now to obtain this value we can consider that $n!=n\times \left( n-1 \right)!$ . Substituting n = 1 in the equation we get, 0! = 1. Hence the value of 0! is the same as 1! = 1.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths