Answer
Verified
476.4k+ views
Hint: In this question we need to find values of the given permutation values. We will use the formula to compute the permutation, that is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$. This will help us to solve the expressions.
Complete step-by-step answer:
For ${}^8{P_7}$, to solve this we will use the formula ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$.
Using the formula, we get ${}^8{P_7} = \dfrac{{8!}}{{\left( {8 - 7} \right)!}} = 8!$
$ \Rightarrow {}^8{P_7} = 40320$
Similarly, for \[{}^{25}{P_5}\] we get,
${}^{25}{P_5} = \dfrac{{25!}}{{\left( {25 - 5} \right)!}} = \dfrac{{25!}}{{20!}} = 25 \times 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{25}{P_5} = 6375600$
Similarly, for \[{}^{24}{P_4}\] we get,
${}^{24}{P_4} = \dfrac{{24!}}{{\left( {24 - 4} \right)!}} = \dfrac{{24!}}{{20!}} = 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{24}{P_4} = 255024$
Similarly, for \[{}^{19}{P_{14}}\] we get,
${}^{19}{P_{14}} = \dfrac{{19!}}{{\left( {19 - 14} \right)!}} = \dfrac{{19!}}{{5!}}$
$ \Rightarrow {}^{19}{P_{14}} = = \dfrac{{19!}}{{5!}}$
Note: Whenever we face such types of problems the value point to remember is that we need to have a good grasp over permutations and its formulas. The most basic formula to calculate permutations has been discussed above and used to solve the given question. However, we must remember that we don’t need to calculate the value of factorial if it is very large.
Complete step-by-step answer:
For ${}^8{P_7}$, to solve this we will use the formula ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$.
Using the formula, we get ${}^8{P_7} = \dfrac{{8!}}{{\left( {8 - 7} \right)!}} = 8!$
$ \Rightarrow {}^8{P_7} = 40320$
Similarly, for \[{}^{25}{P_5}\] we get,
${}^{25}{P_5} = \dfrac{{25!}}{{\left( {25 - 5} \right)!}} = \dfrac{{25!}}{{20!}} = 25 \times 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{25}{P_5} = 6375600$
Similarly, for \[{}^{24}{P_4}\] we get,
${}^{24}{P_4} = \dfrac{{24!}}{{\left( {24 - 4} \right)!}} = \dfrac{{24!}}{{20!}} = 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{24}{P_4} = 255024$
Similarly, for \[{}^{19}{P_{14}}\] we get,
${}^{19}{P_{14}} = \dfrac{{19!}}{{\left( {19 - 14} \right)!}} = \dfrac{{19!}}{{5!}}$
$ \Rightarrow {}^{19}{P_{14}} = = \dfrac{{19!}}{{5!}}$
Note: Whenever we face such types of problems the value point to remember is that we need to have a good grasp over permutations and its formulas. The most basic formula to calculate permutations has been discussed above and used to solve the given question. However, we must remember that we don’t need to calculate the value of factorial if it is very large.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell