
Find the value of ${}^8{P_7},{}^{25}{P_5},{}^{24}{P_4},{}^{19}{P_{14}}.$
Answer
602.1k+ views
Hint: In this question we need to find values of the given permutation values. We will use the formula to compute the permutation, that is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$. This will help us to solve the expressions.
Complete step-by-step answer:
For ${}^8{P_7}$, to solve this we will use the formula ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$.
Using the formula, we get ${}^8{P_7} = \dfrac{{8!}}{{\left( {8 - 7} \right)!}} = 8!$
$ \Rightarrow {}^8{P_7} = 40320$
Similarly, for \[{}^{25}{P_5}\] we get,
${}^{25}{P_5} = \dfrac{{25!}}{{\left( {25 - 5} \right)!}} = \dfrac{{25!}}{{20!}} = 25 \times 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{25}{P_5} = 6375600$
Similarly, for \[{}^{24}{P_4}\] we get,
${}^{24}{P_4} = \dfrac{{24!}}{{\left( {24 - 4} \right)!}} = \dfrac{{24!}}{{20!}} = 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{24}{P_4} = 255024$
Similarly, for \[{}^{19}{P_{14}}\] we get,
${}^{19}{P_{14}} = \dfrac{{19!}}{{\left( {19 - 14} \right)!}} = \dfrac{{19!}}{{5!}}$
$ \Rightarrow {}^{19}{P_{14}} = = \dfrac{{19!}}{{5!}}$
Note: Whenever we face such types of problems the value point to remember is that we need to have a good grasp over permutations and its formulas. The most basic formula to calculate permutations has been discussed above and used to solve the given question. However, we must remember that we don’t need to calculate the value of factorial if it is very large.
Complete step-by-step answer:
For ${}^8{P_7}$, to solve this we will use the formula ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$.
Using the formula, we get ${}^8{P_7} = \dfrac{{8!}}{{\left( {8 - 7} \right)!}} = 8!$
$ \Rightarrow {}^8{P_7} = 40320$
Similarly, for \[{}^{25}{P_5}\] we get,
${}^{25}{P_5} = \dfrac{{25!}}{{\left( {25 - 5} \right)!}} = \dfrac{{25!}}{{20!}} = 25 \times 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{25}{P_5} = 6375600$
Similarly, for \[{}^{24}{P_4}\] we get,
${}^{24}{P_4} = \dfrac{{24!}}{{\left( {24 - 4} \right)!}} = \dfrac{{24!}}{{20!}} = 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{24}{P_4} = 255024$
Similarly, for \[{}^{19}{P_{14}}\] we get,
${}^{19}{P_{14}} = \dfrac{{19!}}{{\left( {19 - 14} \right)!}} = \dfrac{{19!}}{{5!}}$
$ \Rightarrow {}^{19}{P_{14}} = = \dfrac{{19!}}{{5!}}$
Note: Whenever we face such types of problems the value point to remember is that we need to have a good grasp over permutations and its formulas. The most basic formula to calculate permutations has been discussed above and used to solve the given question. However, we must remember that we don’t need to calculate the value of factorial if it is very large.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

