
Find the value of ${}^8{P_7},{}^{25}{P_5},{}^{24}{P_4},{}^{19}{P_{14}}.$
Answer
596.1k+ views
Hint: In this question we need to find values of the given permutation values. We will use the formula to compute the permutation, that is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$. This will help us to solve the expressions.
Complete step-by-step answer:
For ${}^8{P_7}$, to solve this we will use the formula ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$.
Using the formula, we get ${}^8{P_7} = \dfrac{{8!}}{{\left( {8 - 7} \right)!}} = 8!$
$ \Rightarrow {}^8{P_7} = 40320$
Similarly, for \[{}^{25}{P_5}\] we get,
${}^{25}{P_5} = \dfrac{{25!}}{{\left( {25 - 5} \right)!}} = \dfrac{{25!}}{{20!}} = 25 \times 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{25}{P_5} = 6375600$
Similarly, for \[{}^{24}{P_4}\] we get,
${}^{24}{P_4} = \dfrac{{24!}}{{\left( {24 - 4} \right)!}} = \dfrac{{24!}}{{20!}} = 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{24}{P_4} = 255024$
Similarly, for \[{}^{19}{P_{14}}\] we get,
${}^{19}{P_{14}} = \dfrac{{19!}}{{\left( {19 - 14} \right)!}} = \dfrac{{19!}}{{5!}}$
$ \Rightarrow {}^{19}{P_{14}} = = \dfrac{{19!}}{{5!}}$
Note: Whenever we face such types of problems the value point to remember is that we need to have a good grasp over permutations and its formulas. The most basic formula to calculate permutations has been discussed above and used to solve the given question. However, we must remember that we don’t need to calculate the value of factorial if it is very large.
Complete step-by-step answer:
For ${}^8{P_7}$, to solve this we will use the formula ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$.
Using the formula, we get ${}^8{P_7} = \dfrac{{8!}}{{\left( {8 - 7} \right)!}} = 8!$
$ \Rightarrow {}^8{P_7} = 40320$
Similarly, for \[{}^{25}{P_5}\] we get,
${}^{25}{P_5} = \dfrac{{25!}}{{\left( {25 - 5} \right)!}} = \dfrac{{25!}}{{20!}} = 25 \times 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{25}{P_5} = 6375600$
Similarly, for \[{}^{24}{P_4}\] we get,
${}^{24}{P_4} = \dfrac{{24!}}{{\left( {24 - 4} \right)!}} = \dfrac{{24!}}{{20!}} = 24 \times 23 \times 22 \times 21$
$ \Rightarrow {}^{24}{P_4} = 255024$
Similarly, for \[{}^{19}{P_{14}}\] we get,
${}^{19}{P_{14}} = \dfrac{{19!}}{{\left( {19 - 14} \right)!}} = \dfrac{{19!}}{{5!}}$
$ \Rightarrow {}^{19}{P_{14}} = = \dfrac{{19!}}{{5!}}$
Note: Whenever we face such types of problems the value point to remember is that we need to have a good grasp over permutations and its formulas. The most basic formula to calculate permutations has been discussed above and used to solve the given question. However, we must remember that we don’t need to calculate the value of factorial if it is very large.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Define cubit handspan armlength and footspan class 11 physics CBSE

What is known as fixed plants Give examples class 11 biology CBSE

