Answer
Verified
447.3k+ views
Hint: A vector which is both perpendiculars to two vectors is denoted by their cross product. And its unit vector can be found by dividing the resultant vector with its magnitude.
Complete step by step answer:
Since, we have two vectors as, \[\left( {2,3,5} \right)\;\]and \[\left( {2, - 1,4} \right),\]by taking \[\bar x = (2,3,5)\]
and \[\bar y = (2, - 1,4)\] we will start the given problem.
Now, any vector which is perpendicular to both of them always has to be in a perpendicular plane of both vectors. So, we now find, \[\bar x \times \bar y\] to get the vector which is perpendicular to them.
\[\bar x \times \bar y = \] \[\left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
2&3&5 \\
2&{ - 1}&4
\end{array}} \right|\]
\[ = \hat i(12 + 5) - \hat j(8 - 10) + \hat k( - 2 - 6)\]
\[ = 17\hat i + 2\hat j - 8\hat k\]
\[ = (17,2, - 8)\]
So, now, we do have a point as \[(17,2, - 8)\] which is perpendicular to both \[\left( {2,3,5} \right)\;\]and \[\left( {2, - 1,4} \right).\]
But, now, we are here trying to find a unit vector along that direction, so we need to divide the vector with its magnitude value. That is the value of square root of the sum of the squares of all the components in the result of \[\bar x \times \bar y = \]. Here, 3 components are given as, \[(17,2, - 8)\]. Now, we get,
\[\left| {\bar x \times \bar y} \right| = \sqrt {{{17}^2} + {2^2} + {{( - 8)}^2}} \]
\[ \Rightarrow \left| {\bar x \times \bar y} \right| = \]\[\sqrt {289 + 4 + 64} \]
\[ = \sqrt {357} \]
\[\therefore \;Unit{\text{ }}perpendicular{\text{ }}vector{\text{ }}to\;\bar x\;and\;\]\[\bar y\],\[\dfrac{{\bar x \times \bar y}}{{\left| {\bar x \times \bar y} \right|}}\]
\[ = \dfrac{1}{{\sqrt {357} }}(17,2, - 8).\]
Note: We say that 2 vectors are orthogonal if they are perpendicular to each other. i.e. the dot product of the two vectors is zero. We can verify the resultant with the given vectors. A unit vector is a vector that has a magnitude equal to one.
Complete step by step answer:
Since, we have two vectors as, \[\left( {2,3,5} \right)\;\]and \[\left( {2, - 1,4} \right),\]by taking \[\bar x = (2,3,5)\]
and \[\bar y = (2, - 1,4)\] we will start the given problem.
Now, any vector which is perpendicular to both of them always has to be in a perpendicular plane of both vectors. So, we now find, \[\bar x \times \bar y\] to get the vector which is perpendicular to them.
\[\bar x \times \bar y = \] \[\left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
2&3&5 \\
2&{ - 1}&4
\end{array}} \right|\]
\[ = \hat i(12 + 5) - \hat j(8 - 10) + \hat k( - 2 - 6)\]
\[ = 17\hat i + 2\hat j - 8\hat k\]
\[ = (17,2, - 8)\]
So, now, we do have a point as \[(17,2, - 8)\] which is perpendicular to both \[\left( {2,3,5} \right)\;\]and \[\left( {2, - 1,4} \right).\]
But, now, we are here trying to find a unit vector along that direction, so we need to divide the vector with its magnitude value. That is the value of square root of the sum of the squares of all the components in the result of \[\bar x \times \bar y = \]. Here, 3 components are given as, \[(17,2, - 8)\]. Now, we get,
\[\left| {\bar x \times \bar y} \right| = \sqrt {{{17}^2} + {2^2} + {{( - 8)}^2}} \]
\[ \Rightarrow \left| {\bar x \times \bar y} \right| = \]\[\sqrt {289 + 4 + 64} \]
\[ = \sqrt {357} \]
\[\therefore \;Unit{\text{ }}perpendicular{\text{ }}vector{\text{ }}to\;\bar x\;and\;\]\[\bar y\],\[\dfrac{{\bar x \times \bar y}}{{\left| {\bar x \times \bar y} \right|}}\]
\[ = \dfrac{1}{{\sqrt {357} }}(17,2, - 8).\]
Note: We say that 2 vectors are orthogonal if they are perpendicular to each other. i.e. the dot product of the two vectors is zero. We can verify the resultant with the given vectors. A unit vector is a vector that has a magnitude equal to one.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE