Answer
Verified
449.1k+ views
Hint: We use the fact that gradient of the surface at a given point is the normal vector for that surface. So, we first find the normal vector for the given surface. Once we find the normal vector, we convert the normal vector to a unit vector (vector of magnitude ‘1’) to get the required result.
Complete step by step answer:
We have the equation of the surface given as $4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z=40$. We need to find the unit normal vector at the point $\left( 2,-1,2 \right)$ for the given surface.
Let us assume the equation of the surface be $f(x,y,z)=0\Leftrightarrow 4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40=0$.
We first find the normal vector for the given surface f. We know that the gradient of the surface ‘f’ at a given point $\left( x,y,z \right)$ is vector normal to the surface.
The gradient of the surface is defined as ${{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)}}={{\left. \left( \dfrac{\partial f}{\partial x},\dfrac{\partial f}{\partial y},\dfrac{\partial f}{\partial z} \right) \right|}_{\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)}}$.
Now we find the gradient of the surface $f(x,y,z)=4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40$.
Normal vector of the surface is ${{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}={{\left. \left( \dfrac{\partial f}{\partial x},\dfrac{\partial f}{\partial y},\dfrac{\partial f}{\partial z} \right) \right|}_{\left( 2,-1,2 \right)}}$.
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}={{\left. \left( \dfrac{\partial \left( 4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40 \right)}{\partial x},\dfrac{\partial \left( 4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40 \right)}{\partial y},\dfrac{\partial \left( 4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40 \right)}{\partial z} \right) \right|}_{\left( 2,-1,2 \right)}}\].
We know that while doing partial derivative w.r.t x $\left( \dfrac{\partial }{\partial x} \right)$, we take all other terms as constant and apply the derivative only for ‘x’.
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}={{\left. \left( \left( 4{{z}^{3}}-6x{{y}^{2}}z-0 \right),\left( 0-6{{x}^{2}}yz-0 \right),\left( 12x{{z}^{2}}-3{{x}^{2}}{{y}^{2}}-0 \right) \right) \right|}_{\left( 2,-1,2 \right)}}\].
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}={{\left. \left( \left( 4{{z}^{3}}-6x{{y}^{2}}z \right),\left( -6{{x}^{2}}yz \right),\left( 12x{{z}^{2}}-3{{x}^{2}}{{y}^{2}} \right) \right) \right|}_{\left( 2,-1,2 \right)}}\].
Normal vector of the surface $f(x,y,z)$ is\[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}=\left( \left( 4{{\left( 2 \right)}^{3}}-6\left( 2 \right){{\left( -1 \right)}^{2}}\left( 2 \right) \right),\left( -6{{\left( 2 \right)}^{2}}\left( -1 \right)\left( 2 \right) \right),\left( 12\left( 2 \right){{\left( 2 \right)}^{2}}-3{{\left( 2 \right)}^{2}}{{\left( -1 \right)}^{2}} \right) \right)\].
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}=\left( \left( 4.\left( 8 \right)-6.\left( 2 \right).\left( 1 \right).\left( 2 \right) \right),\left( -6.\left( 4 \right).\left( -1 \right).\left( 2 \right) \right),\left( 12.\left( 2 \right).\left( 4 \right)-3.\left( 4 \right).\left( 1 \right) \right) \right)\].
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}=\left( \left( 32-24 \right),48,\left( 96-12 \right) \right)\].
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}=\left( 8,48,84 \right)\] ---(1).
We know that the unit vector of any given vector $\left( x,y,z \right)$ is $\pm \dfrac{1}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}\times \left( x,y,z \right)$. Using this we find the unit normal vector for the surface $f(x,y,z)$.
So, unit normal vector of the surface $f(x,y,z)$ is $\pm \dfrac{1}{\sqrt{{{8}^{2}}+{{48}^{2}}+{{84}^{2}}}}\times \left( 8,48,84 \right)$.
Note: We can verify that the magnitude of the obtained unit normal vector is ‘1’. We can see that the normal vector and unit normal vectors are parallel to each other having different magnitudes. We should not write a normal vector as a unit normal vector as its magnitude is not ‘1’.
Complete step by step answer:
We have the equation of the surface given as $4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z=40$. We need to find the unit normal vector at the point $\left( 2,-1,2 \right)$ for the given surface.
Let us assume the equation of the surface be $f(x,y,z)=0\Leftrightarrow 4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40=0$.
We first find the normal vector for the given surface f. We know that the gradient of the surface ‘f’ at a given point $\left( x,y,z \right)$ is vector normal to the surface.
The gradient of the surface is defined as ${{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)}}={{\left. \left( \dfrac{\partial f}{\partial x},\dfrac{\partial f}{\partial y},\dfrac{\partial f}{\partial z} \right) \right|}_{\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)}}$.
Now we find the gradient of the surface $f(x,y,z)=4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40$.
Normal vector of the surface is ${{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}={{\left. \left( \dfrac{\partial f}{\partial x},\dfrac{\partial f}{\partial y},\dfrac{\partial f}{\partial z} \right) \right|}_{\left( 2,-1,2 \right)}}$.
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}={{\left. \left( \dfrac{\partial \left( 4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40 \right)}{\partial x},\dfrac{\partial \left( 4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40 \right)}{\partial y},\dfrac{\partial \left( 4x{{z}^{3}}-3{{x}^{2}}{{y}^{2}}z-40 \right)}{\partial z} \right) \right|}_{\left( 2,-1,2 \right)}}\].
We know that while doing partial derivative w.r.t x $\left( \dfrac{\partial }{\partial x} \right)$, we take all other terms as constant and apply the derivative only for ‘x’.
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}={{\left. \left( \left( 4{{z}^{3}}-6x{{y}^{2}}z-0 \right),\left( 0-6{{x}^{2}}yz-0 \right),\left( 12x{{z}^{2}}-3{{x}^{2}}{{y}^{2}}-0 \right) \right) \right|}_{\left( 2,-1,2 \right)}}\].
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}={{\left. \left( \left( 4{{z}^{3}}-6x{{y}^{2}}z \right),\left( -6{{x}^{2}}yz \right),\left( 12x{{z}^{2}}-3{{x}^{2}}{{y}^{2}} \right) \right) \right|}_{\left( 2,-1,2 \right)}}\].
Normal vector of the surface $f(x,y,z)$ is\[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}=\left( \left( 4{{\left( 2 \right)}^{3}}-6\left( 2 \right){{\left( -1 \right)}^{2}}\left( 2 \right) \right),\left( -6{{\left( 2 \right)}^{2}}\left( -1 \right)\left( 2 \right) \right),\left( 12\left( 2 \right){{\left( 2 \right)}^{2}}-3{{\left( 2 \right)}^{2}}{{\left( -1 \right)}^{2}} \right) \right)\].
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}=\left( \left( 4.\left( 8 \right)-6.\left( 2 \right).\left( 1 \right).\left( 2 \right) \right),\left( -6.\left( 4 \right).\left( -1 \right).\left( 2 \right) \right),\left( 12.\left( 2 \right).\left( 4 \right)-3.\left( 4 \right).\left( 1 \right) \right) \right)\].
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}=\left( \left( 32-24 \right),48,\left( 96-12 \right) \right)\].
Normal vector of the surface $f(x,y,z)$ is \[{{\left. grad\left( f\left( x,y,z \right) \right) \right|}_{\left( 2,-1,2 \right)}}=\left( 8,48,84 \right)\] ---(1).
We know that the unit vector of any given vector $\left( x,y,z \right)$ is $\pm \dfrac{1}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}\times \left( x,y,z \right)$. Using this we find the unit normal vector for the surface $f(x,y,z)$.
So, unit normal vector of the surface $f(x,y,z)$ is $\pm \dfrac{1}{\sqrt{{{8}^{2}}+{{48}^{2}}+{{84}^{2}}}}\times \left( 8,48,84 \right)$.
Note: We can verify that the magnitude of the obtained unit normal vector is ‘1’. We can see that the normal vector and unit normal vectors are parallel to each other having different magnitudes. We should not write a normal vector as a unit normal vector as its magnitude is not ‘1’.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell