# Find the term independent of $x$ in ${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ .

$

\left( a \right)\frac{6}{{15}} \\

\left( b \right)\frac{7}{{18}} \\

\left( c \right)\frac{7}{8} \\

\left( d \right)\frac{4}{9} \\

$

Answer

Verified

382.8k+ views

Hint- Use general term of binomial expansion ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$ , where n is positive integer.

As we know,

${\left( {X + Y} \right)^n} = {}^n{C_0}{\left( X \right)^n}{ + ^n}{C_1}{\left( X \right)^{n - 1}}\left( Y \right) + ...........{ + ^n}{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r} + .........{}^n{C_{n - 1}}\left( X \right){\left( Y \right)^{n - 1}} + {}^n{C_n}{\left( Y \right)^n}$ is a binomial expansion, where n is positive integer and general term of this a binomial expansion is ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$.

${\left( {X + Y} \right)^n} = {\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$, compare value of X, Y and n.

$X = \frac{{3{x^2}}}{2}$ ,$Y = \frac{{ - 1}}{{3x}}$ and $n = 9$ .

Now, General term of this expansion ${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ is ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$.

$ \Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{{3{x^2}}}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{{3x}}} \right)^r}$

Now, collect all powers of x.

$

\Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{3}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{3}} \right)^r}{\left( x \right)^{18 - 2r}}{\left( {\frac{1}{x}} \right)^r} \\

\Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{3}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{3}} \right)^r}{\left( x \right)^{18 - 3r}}..........\left( 2 \right) \\

$

To find the term independent of x. So, we have to make the power of x become 0.

$

18 - 3r = 0 \\

\Rightarrow r = 6 \\

$

Put the value of r in (2) equation.

$

\Rightarrow {T_7} = {}^9{C_6}{\left( {\frac{3}{2}} \right)^3}{\left( {\frac{{ - 1}}{3}} \right)^6}{\left( x \right)^0} \\

\Rightarrow {T_7} = {}^9{C_6}\left( {\frac{1}{8}} \right)\left( {\frac{1}{{27}}} \right).............\left( 3 \right) \\

$

Now, we use $^n{C_r} = \frac{{n!}}{{r!\left( {n - r} \right)!}}$ .

\[

{}^9{C_6} = \frac{{9!}}{{6!\left( {9 - 6} \right)!}} = \frac{{9!}}{{6!\left( 3 \right)!}} \\

\Rightarrow {}^9{C_6} = \frac{{9 \times 8 \times 7 \times 6!}}{{6!\left( 3 \right)!}} = \frac{{9 \times 8 \times 7}}{6} = 84 \\

\]

Put the value \[{}^9{C_6}\] in (3) equation.

$

\Rightarrow {T_7} = \frac{{84}}{{8 \times 27}} \\

\Rightarrow {T_7} = \frac{7}{{18}} \\

$

So, the correct option is (b).

Note- Whenever we face such types of problems we use important points. Some points are to use the general term of binomial expansion and put the value of X and Y in the general term after comparison then make the power of x become zero for the independent term from x.

As we know,

${\left( {X + Y} \right)^n} = {}^n{C_0}{\left( X \right)^n}{ + ^n}{C_1}{\left( X \right)^{n - 1}}\left( Y \right) + ...........{ + ^n}{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r} + .........{}^n{C_{n - 1}}\left( X \right){\left( Y \right)^{n - 1}} + {}^n{C_n}{\left( Y \right)^n}$ is a binomial expansion, where n is positive integer and general term of this a binomial expansion is ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$.

${\left( {X + Y} \right)^n} = {\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$, compare value of X, Y and n.

$X = \frac{{3{x^2}}}{2}$ ,$Y = \frac{{ - 1}}{{3x}}$ and $n = 9$ .

Now, General term of this expansion ${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ is ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$.

$ \Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{{3{x^2}}}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{{3x}}} \right)^r}$

Now, collect all powers of x.

$

\Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{3}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{3}} \right)^r}{\left( x \right)^{18 - 2r}}{\left( {\frac{1}{x}} \right)^r} \\

\Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{3}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{3}} \right)^r}{\left( x \right)^{18 - 3r}}..........\left( 2 \right) \\

$

To find the term independent of x. So, we have to make the power of x become 0.

$

18 - 3r = 0 \\

\Rightarrow r = 6 \\

$

Put the value of r in (2) equation.

$

\Rightarrow {T_7} = {}^9{C_6}{\left( {\frac{3}{2}} \right)^3}{\left( {\frac{{ - 1}}{3}} \right)^6}{\left( x \right)^0} \\

\Rightarrow {T_7} = {}^9{C_6}\left( {\frac{1}{8}} \right)\left( {\frac{1}{{27}}} \right).............\left( 3 \right) \\

$

Now, we use $^n{C_r} = \frac{{n!}}{{r!\left( {n - r} \right)!}}$ .

\[

{}^9{C_6} = \frac{{9!}}{{6!\left( {9 - 6} \right)!}} = \frac{{9!}}{{6!\left( 3 \right)!}} \\

\Rightarrow {}^9{C_6} = \frac{{9 \times 8 \times 7 \times 6!}}{{6!\left( 3 \right)!}} = \frac{{9 \times 8 \times 7}}{6} = 84 \\

\]

Put the value \[{}^9{C_6}\] in (3) equation.

$

\Rightarrow {T_7} = \frac{{84}}{{8 \times 27}} \\

\Rightarrow {T_7} = \frac{7}{{18}} \\

$

So, the correct option is (b).

Note- Whenever we face such types of problems we use important points. Some points are to use the general term of binomial expansion and put the value of X and Y in the general term after comparison then make the power of x become zero for the independent term from x.

Recently Updated Pages

Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts

State Gay Lusaaccs law of gaseous volume class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Which is the tallest animal on the earth A Giraffes class 9 social science CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE