
Find the term independent of $x$ in ${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ .
$
\left( a \right)\frac{6}{{15}} \\
\left( b \right)\frac{7}{{18}} \\
\left( c \right)\frac{7}{8} \\
\left( d \right)\frac{4}{9} \\
$
Answer
611.7k+ views
Hint- Use general term of binomial expansion ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$ , where n is positive integer.
As we know,
${\left( {X + Y} \right)^n} = {}^n{C_0}{\left( X \right)^n}{ + ^n}{C_1}{\left( X \right)^{n - 1}}\left( Y \right) + ...........{ + ^n}{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r} + .........{}^n{C_{n - 1}}\left( X \right){\left( Y \right)^{n - 1}} + {}^n{C_n}{\left( Y \right)^n}$ is a binomial expansion, where n is positive integer and general term of this a binomial expansion is ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$.
${\left( {X + Y} \right)^n} = {\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$, compare value of X, Y and n.
$X = \frac{{3{x^2}}}{2}$ ,$Y = \frac{{ - 1}}{{3x}}$ and $n = 9$ .
Now, General term of this expansion ${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ is ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$.
$ \Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{{3{x^2}}}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{{3x}}} \right)^r}$
Now, collect all powers of x.
$
\Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{3}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{3}} \right)^r}{\left( x \right)^{18 - 2r}}{\left( {\frac{1}{x}} \right)^r} \\
\Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{3}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{3}} \right)^r}{\left( x \right)^{18 - 3r}}..........\left( 2 \right) \\
$
To find the term independent of x. So, we have to make the power of x become 0.
$
18 - 3r = 0 \\
\Rightarrow r = 6 \\
$
Put the value of r in (2) equation.
$
\Rightarrow {T_7} = {}^9{C_6}{\left( {\frac{3}{2}} \right)^3}{\left( {\frac{{ - 1}}{3}} \right)^6}{\left( x \right)^0} \\
\Rightarrow {T_7} = {}^9{C_6}\left( {\frac{1}{8}} \right)\left( {\frac{1}{{27}}} \right).............\left( 3 \right) \\
$
Now, we use $^n{C_r} = \frac{{n!}}{{r!\left( {n - r} \right)!}}$ .
\[
{}^9{C_6} = \frac{{9!}}{{6!\left( {9 - 6} \right)!}} = \frac{{9!}}{{6!\left( 3 \right)!}} \\
\Rightarrow {}^9{C_6} = \frac{{9 \times 8 \times 7 \times 6!}}{{6!\left( 3 \right)!}} = \frac{{9 \times 8 \times 7}}{6} = 84 \\
\]
Put the value \[{}^9{C_6}\] in (3) equation.
$
\Rightarrow {T_7} = \frac{{84}}{{8 \times 27}} \\
\Rightarrow {T_7} = \frac{7}{{18}} \\
$
So, the correct option is (b).
Note- Whenever we face such types of problems we use important points. Some points are to use the general term of binomial expansion and put the value of X and Y in the general term after comparison then make the power of x become zero for the independent term from x.
As we know,
${\left( {X + Y} \right)^n} = {}^n{C_0}{\left( X \right)^n}{ + ^n}{C_1}{\left( X \right)^{n - 1}}\left( Y \right) + ...........{ + ^n}{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r} + .........{}^n{C_{n - 1}}\left( X \right){\left( Y \right)^{n - 1}} + {}^n{C_n}{\left( Y \right)^n}$ is a binomial expansion, where n is positive integer and general term of this a binomial expansion is ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$.
${\left( {X + Y} \right)^n} = {\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$, compare value of X, Y and n.
$X = \frac{{3{x^2}}}{2}$ ,$Y = \frac{{ - 1}}{{3x}}$ and $n = 9$ .
Now, General term of this expansion ${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ is ${T_{r + 1}} = {}^n{C_r}{\left( X \right)^{n - r}}{\left( Y \right)^r}$.
$ \Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{{3{x^2}}}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{{3x}}} \right)^r}$
Now, collect all powers of x.
$
\Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{3}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{3}} \right)^r}{\left( x \right)^{18 - 2r}}{\left( {\frac{1}{x}} \right)^r} \\
\Rightarrow {T_{r + 1}} = {}^9{C_r}{\left( {\frac{3}{2}} \right)^{9 - r}}{\left( {\frac{{ - 1}}{3}} \right)^r}{\left( x \right)^{18 - 3r}}..........\left( 2 \right) \\
$
To find the term independent of x. So, we have to make the power of x become 0.
$
18 - 3r = 0 \\
\Rightarrow r = 6 \\
$
Put the value of r in (2) equation.
$
\Rightarrow {T_7} = {}^9{C_6}{\left( {\frac{3}{2}} \right)^3}{\left( {\frac{{ - 1}}{3}} \right)^6}{\left( x \right)^0} \\
\Rightarrow {T_7} = {}^9{C_6}\left( {\frac{1}{8}} \right)\left( {\frac{1}{{27}}} \right).............\left( 3 \right) \\
$
Now, we use $^n{C_r} = \frac{{n!}}{{r!\left( {n - r} \right)!}}$ .
\[
{}^9{C_6} = \frac{{9!}}{{6!\left( {9 - 6} \right)!}} = \frac{{9!}}{{6!\left( 3 \right)!}} \\
\Rightarrow {}^9{C_6} = \frac{{9 \times 8 \times 7 \times 6!}}{{6!\left( 3 \right)!}} = \frac{{9 \times 8 \times 7}}{6} = 84 \\
\]
Put the value \[{}^9{C_6}\] in (3) equation.
$
\Rightarrow {T_7} = \frac{{84}}{{8 \times 27}} \\
\Rightarrow {T_7} = \frac{7}{{18}} \\
$
So, the correct option is (b).
Note- Whenever we face such types of problems we use important points. Some points are to use the general term of binomial expansion and put the value of X and Y in the general term after comparison then make the power of x become zero for the independent term from x.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

