Answer
Verified
491.4k+ views
Hint: Assume value of \[\pi =3.14\]. Given is the diameter of the sphere. Find the radius and substitute it in the formula for surface area of the sphere. Simplify it and find the surface area corresponding to each diameter.
Complete step-by-step answer:
Let us assume the value of \[\pi =\dfrac{22}{7}\].
(i) 14cm
Here, the diameter of the sphere is given as 14cm.
Surface area of the sphere is given by the formula \[4\pi {{r}^{2}}\].
But we are given the diameter. To find the radius take half of the given diameter.
\[\begin{align}
& radius=\dfrac{diameter}{2} \\
& r=\dfrac{d}{2}=\dfrac{14}{2}=7cm \\
\end{align}\]
\[\therefore \] radius of the sphere, r = 7cm.
Surface area of area\[=4\pi {{r}^{2}}\]
\[\begin{align}
& =4\times \dfrac{22}{7}\times {{\left( 7 \right)}^{2}} \\
& =4\times \dfrac{22}{7}\times 7\times 7 \\
\end{align}\]
Cancel out the like terms and multiply.
\[=4\times 22\times 7=616c{{m}^{2}}\]
\[\therefore \] Surface area of sphere of radius 14 cm = \[616c{{m}^{2}}\].
(ii) 21cm
The diameter of the sphere is given as 21cm.
Hence, we need to find the radius of the sphere.
Radius\[=\dfrac{Diameter}{2}=\dfrac{21}{2}=10.5\]cm
\[\therefore \] Radius of the sphere, r = 10.5cm.
We know that the surface area of sphere\[=4\pi {{r}^{2}}\]
\[\begin{align}
& =4\times \dfrac{22}{7}\times {{\left( 10.5 \right)}^{2}} \\
& =4\times \dfrac{22}{7}\times 10.5\times 10.5 \\
& =1386c{{m}^{2}} \\
\end{align}\]
\[\therefore \] Surface area of sphere of radius 14 cm =\[1386c{{m}^{2}}\].
(iii) 3.5cm
We are given the diameter of the sphere as 3.5cm.
Hence, we need to find the radius of the sphere.
Radius\[=\dfrac{Diameter}{2}=\dfrac{3.5}{2}=1.75\]cm
\[\therefore \] Radius of sphere, r = 1.75cm.
We know the surface area of sphere\[=4\pi {{r}^{2}}\]
\[\begin{align}
& =4\times \dfrac{22}{7}\times {{\left( 1.75 \right)}^{2}} \\
& =4\times \dfrac{22}{7}\times 1.75\times 1.75 \\
& =38.5c{{m}^{2}} \\
\end{align}\]
\[\therefore \]Surface area of the sphere of radius 3.5cm = \[38.5c{{m}^{2}}\].
Note: The difference between a sphere and circle is that a circle is in 2-dimension, whereas a sphere is a 3-dimensional shape. In a visual perspective it has a 3—dimensional structure that is formed by rotating a disc that is circular with one of the diagonal. Here, read the question carefully, don’t confuse the diameter given to be radius of the sphere. If taking the diameter directly without finding the radius, change the formula of surface area of the sphere to put \[r=\dfrac{d}{2}\].
Surface area of sphere\[=4\pi {{r}^{2}}\]
\[=4\pi {{\left( \dfrac{d}{2} \right)}^{2}}=\dfrac{4\pi {{d}^{2}}}{4}=\pi {{d}^{2}}\]
\[\therefore \] Surface area of sphere \[=\pi {{d}^{2}}\].
Complete step-by-step answer:
Let us assume the value of \[\pi =\dfrac{22}{7}\].
(i) 14cm
Here, the diameter of the sphere is given as 14cm.
Surface area of the sphere is given by the formula \[4\pi {{r}^{2}}\].
But we are given the diameter. To find the radius take half of the given diameter.
\[\begin{align}
& radius=\dfrac{diameter}{2} \\
& r=\dfrac{d}{2}=\dfrac{14}{2}=7cm \\
\end{align}\]
\[\therefore \] radius of the sphere, r = 7cm.
Surface area of area\[=4\pi {{r}^{2}}\]
\[\begin{align}
& =4\times \dfrac{22}{7}\times {{\left( 7 \right)}^{2}} \\
& =4\times \dfrac{22}{7}\times 7\times 7 \\
\end{align}\]
Cancel out the like terms and multiply.
\[=4\times 22\times 7=616c{{m}^{2}}\]
\[\therefore \] Surface area of sphere of radius 14 cm = \[616c{{m}^{2}}\].
(ii) 21cm
The diameter of the sphere is given as 21cm.
Hence, we need to find the radius of the sphere.
Radius\[=\dfrac{Diameter}{2}=\dfrac{21}{2}=10.5\]cm
\[\therefore \] Radius of the sphere, r = 10.5cm.
We know that the surface area of sphere\[=4\pi {{r}^{2}}\]
\[\begin{align}
& =4\times \dfrac{22}{7}\times {{\left( 10.5 \right)}^{2}} \\
& =4\times \dfrac{22}{7}\times 10.5\times 10.5 \\
& =1386c{{m}^{2}} \\
\end{align}\]
\[\therefore \] Surface area of sphere of radius 14 cm =\[1386c{{m}^{2}}\].
(iii) 3.5cm
We are given the diameter of the sphere as 3.5cm.
Hence, we need to find the radius of the sphere.
Radius\[=\dfrac{Diameter}{2}=\dfrac{3.5}{2}=1.75\]cm
\[\therefore \] Radius of sphere, r = 1.75cm.
We know the surface area of sphere\[=4\pi {{r}^{2}}\]
\[\begin{align}
& =4\times \dfrac{22}{7}\times {{\left( 1.75 \right)}^{2}} \\
& =4\times \dfrac{22}{7}\times 1.75\times 1.75 \\
& =38.5c{{m}^{2}} \\
\end{align}\]
\[\therefore \]Surface area of the sphere of radius 3.5cm = \[38.5c{{m}^{2}}\].
Note: The difference between a sphere and circle is that a circle is in 2-dimension, whereas a sphere is a 3-dimensional shape. In a visual perspective it has a 3—dimensional structure that is formed by rotating a disc that is circular with one of the diagonal. Here, read the question carefully, don’t confuse the diameter given to be radius of the sphere. If taking the diameter directly without finding the radius, change the formula of surface area of the sphere to put \[r=\dfrac{d}{2}\].
Surface area of sphere\[=4\pi {{r}^{2}}\]
\[=4\pi {{\left( \dfrac{d}{2} \right)}^{2}}=\dfrac{4\pi {{d}^{2}}}{4}=\pi {{d}^{2}}\]
\[\therefore \] Surface area of sphere \[=\pi {{d}^{2}}\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE