Answer
Verified
470.7k+ views
Hint: A sequence is an ordered list of numbers. And the dots mean to continue forward in the pattern established in the given sequence. Also, each term in the sequence is called a term.
Step by step solution:
The given sequence is \[8,88,888,8888,...............\]
Let the sum of the given \[n\]terms are \[{S_n}\]
i.e. \[{S_n} = 8 + 88 + 888 + 8888 + ........................... + n{\text{ terms}}\]
Taking out \[8\]common in all terms we get
\[{S_n} = 8\left( {1 + 11 + 111 + 1111..............................n{\text{ terms}}} \right)\]
Multiplying and dividing with \[9\]in numerator and denominator we get
\[{S_n} = \dfrac{8}{9}\left( {9 + 99 + 999 + 9999 + ..................n{\text{ terms}}} \right)\]
We can rewrite this as
\[
{S_n} = \dfrac{8}{9}\left[ {\left( {10 - 1} \right) + \left( {100 - 1} \right) + \left( {1000 - 1} \right) +
.......................................n{\text{ terms}}} \right] \\
{S_n} = \dfrac{8}{9}\left[ {\left( {10 - 1} \right) + \left( {{{10}^2} - 1} \right) + \left( {{{10}^3} - 1}
\right) + ...............................n{\text{ terms}}} \right] \\
\]
Separating the terms, we get
\[{S_n} = \dfrac{8}{9}\left[ {\left( {10 + {{10}^2} + {{10}^3} + ...............n{\text{ terms}}} \right) - \left(
{1 + 1 + 1 + 1 + ...............n{\text{ terms}}} \right)} \right]\]
We know that if \[n\] terms are in G.P. with a common ratio \[r\]and first term \[a\] then the sum of
the \[n\]terms is equal to \[\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] when \[r > 1\]
Since here \[a = 10,{\text{ }}r = 10\] and sum of \[n\] one`s is equal to \[n\].Then the sum of \[n\]
terms is equal to
\[
{S_n} = \dfrac{8}{9}\left[ {\dfrac{{10\left( {{{10}^n} - 1} \right)}}{{10 - 1}} - n} \right] \\
\\
{S_n} = \dfrac{8}{9}\left[ {\dfrac{{10\left( {{{10}^n} - 1} \right)}}{9} - n} \right] \\
\\
{S_n} = \dfrac{{80}}{{81}}\left[ {{{10}^n} - 1} \right] - \dfrac{8}{9}n \\
\\
\]
\[\therefore {S_n} = \dfrac{{80}}{{81}}\left[ {{{10}^n} - 1} \right] - \dfrac{8}{9}n\]
Therefore, the sum of the terms \[8,88,888,8888,...............\] is \[\dfrac{{80}}{{81}}\left[ {{{10}^n} -
1} \right] - \dfrac{8}{9}n\].
Note: In these types of problems first rewrite the given sequence so the they are in some
progressions like A.P., G.P. or in H.P. By doing this we can sum up them easily by using the known formulae
Step by step solution:
The given sequence is \[8,88,888,8888,...............\]
Let the sum of the given \[n\]terms are \[{S_n}\]
i.e. \[{S_n} = 8 + 88 + 888 + 8888 + ........................... + n{\text{ terms}}\]
Taking out \[8\]common in all terms we get
\[{S_n} = 8\left( {1 + 11 + 111 + 1111..............................n{\text{ terms}}} \right)\]
Multiplying and dividing with \[9\]in numerator and denominator we get
\[{S_n} = \dfrac{8}{9}\left( {9 + 99 + 999 + 9999 + ..................n{\text{ terms}}} \right)\]
We can rewrite this as
\[
{S_n} = \dfrac{8}{9}\left[ {\left( {10 - 1} \right) + \left( {100 - 1} \right) + \left( {1000 - 1} \right) +
.......................................n{\text{ terms}}} \right] \\
{S_n} = \dfrac{8}{9}\left[ {\left( {10 - 1} \right) + \left( {{{10}^2} - 1} \right) + \left( {{{10}^3} - 1}
\right) + ...............................n{\text{ terms}}} \right] \\
\]
Separating the terms, we get
\[{S_n} = \dfrac{8}{9}\left[ {\left( {10 + {{10}^2} + {{10}^3} + ...............n{\text{ terms}}} \right) - \left(
{1 + 1 + 1 + 1 + ...............n{\text{ terms}}} \right)} \right]\]
We know that if \[n\] terms are in G.P. with a common ratio \[r\]and first term \[a\] then the sum of
the \[n\]terms is equal to \[\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] when \[r > 1\]
Since here \[a = 10,{\text{ }}r = 10\] and sum of \[n\] one`s is equal to \[n\].Then the sum of \[n\]
terms is equal to
\[
{S_n} = \dfrac{8}{9}\left[ {\dfrac{{10\left( {{{10}^n} - 1} \right)}}{{10 - 1}} - n} \right] \\
\\
{S_n} = \dfrac{8}{9}\left[ {\dfrac{{10\left( {{{10}^n} - 1} \right)}}{9} - n} \right] \\
\\
{S_n} = \dfrac{{80}}{{81}}\left[ {{{10}^n} - 1} \right] - \dfrac{8}{9}n \\
\\
\]
\[\therefore {S_n} = \dfrac{{80}}{{81}}\left[ {{{10}^n} - 1} \right] - \dfrac{8}{9}n\]
Therefore, the sum of the terms \[8,88,888,8888,...............\] is \[\dfrac{{80}}{{81}}\left[ {{{10}^n} -
1} \right] - \dfrac{8}{9}n\].
Note: In these types of problems first rewrite the given sequence so the they are in some
progressions like A.P., G.P. or in H.P. By doing this we can sum up them easily by using the known formulae
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE