
Find the sum of the infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Answer
575.7k+ views
Hint: Let $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$. Simplify the equation by adding 1 on both sides. Use the expansion \[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\] and compare its RHS with that of S to get the value of x and hence find the value of S.
Complete step by step solution:
We have an infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
We need to find the sum of this series.
Let’s call the sum as S.
Then we have $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....(1)$
We will simplify the above expression by adding 1 on both the sides of the equation.
Thus, we have
$1 + S = 1 + \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Now, RHS can be expressed as follows:
$1 + S = 1 + \dfrac{3}{{1!}}.(\dfrac{1}{4}) + \dfrac{{3.5}}{{2!}}.{(\dfrac{1}{4})^2} + \dfrac{{3.5.7}}{{3!}}.{(\dfrac{1}{4})^3} + ....(1)$
Consider the expansion of${(1 - x)^{ - \dfrac{p}{q}}}$
\[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\]
Comparing (1) with the expansion, we get $p = 3$ and $p + q = 5$.
$ \Rightarrow q = 2$.
Also $\dfrac{x}{q} = \dfrac{1}{4} \Rightarrow x = \dfrac{1}{2}$
Substituting these values in the RHS of equation (1), we get
\[1 + S = {(1 - \dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(\dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(2)^{\dfrac{3}{2}}} = 2\sqrt 2 \]
Now, subtract 1 from both the sides to get S.
Therefore, $S = 2\sqrt 2 - 1$
That is, the sum of the given series is $S = 2\sqrt 2 - 1$.
Note: For any real number x such that$\left| x \right| < 1$ and rational number n, the binomial expansion of ${(1 + x)^n}$ is given by
${(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1)}}{{2!}}{x^2} + .... + \dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}{x^r} + .....$
Where $\dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}$is the coefficient of the\[{r^{th}}\]term of the series
Complete step by step solution:
We have an infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
We need to find the sum of this series.
Let’s call the sum as S.
Then we have $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....(1)$
We will simplify the above expression by adding 1 on both the sides of the equation.
Thus, we have
$1 + S = 1 + \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Now, RHS can be expressed as follows:
$1 + S = 1 + \dfrac{3}{{1!}}.(\dfrac{1}{4}) + \dfrac{{3.5}}{{2!}}.{(\dfrac{1}{4})^2} + \dfrac{{3.5.7}}{{3!}}.{(\dfrac{1}{4})^3} + ....(1)$
Consider the expansion of${(1 - x)^{ - \dfrac{p}{q}}}$
\[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\]
Comparing (1) with the expansion, we get $p = 3$ and $p + q = 5$.
$ \Rightarrow q = 2$.
Also $\dfrac{x}{q} = \dfrac{1}{4} \Rightarrow x = \dfrac{1}{2}$
Substituting these values in the RHS of equation (1), we get
\[1 + S = {(1 - \dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(\dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(2)^{\dfrac{3}{2}}} = 2\sqrt 2 \]
Now, subtract 1 from both the sides to get S.
Therefore, $S = 2\sqrt 2 - 1$
That is, the sum of the given series is $S = 2\sqrt 2 - 1$.
Note: For any real number x such that$\left| x \right| < 1$ and rational number n, the binomial expansion of ${(1 + x)^n}$ is given by
${(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1)}}{{2!}}{x^2} + .... + \dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}{x^r} + .....$
Where $\dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}$is the coefficient of the\[{r^{th}}\]term of the series
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

