Answer
Verified
445.2k+ views
Hint: Let $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$. Simplify the equation by adding 1 on both sides. Use the expansion \[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\] and compare its RHS with that of S to get the value of x and hence find the value of S.
Complete step by step solution:
We have an infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
We need to find the sum of this series.
Let’s call the sum as S.
Then we have $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....(1)$
We will simplify the above expression by adding 1 on both the sides of the equation.
Thus, we have
$1 + S = 1 + \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Now, RHS can be expressed as follows:
$1 + S = 1 + \dfrac{3}{{1!}}.(\dfrac{1}{4}) + \dfrac{{3.5}}{{2!}}.{(\dfrac{1}{4})^2} + \dfrac{{3.5.7}}{{3!}}.{(\dfrac{1}{4})^3} + ....(1)$
Consider the expansion of${(1 - x)^{ - \dfrac{p}{q}}}$
\[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\]
Comparing (1) with the expansion, we get $p = 3$ and $p + q = 5$.
$ \Rightarrow q = 2$.
Also $\dfrac{x}{q} = \dfrac{1}{4} \Rightarrow x = \dfrac{1}{2}$
Substituting these values in the RHS of equation (1), we get
\[1 + S = {(1 - \dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(\dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(2)^{\dfrac{3}{2}}} = 2\sqrt 2 \]
Now, subtract 1 from both the sides to get S.
Therefore, $S = 2\sqrt 2 - 1$
That is, the sum of the given series is $S = 2\sqrt 2 - 1$.
Note: For any real number x such that$\left| x \right| < 1$ and rational number n, the binomial expansion of ${(1 + x)^n}$ is given by
${(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1)}}{{2!}}{x^2} + .... + \dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}{x^r} + .....$
Where $\dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}$is the coefficient of the\[{r^{th}}\]term of the series
Complete step by step solution:
We have an infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
We need to find the sum of this series.
Let’s call the sum as S.
Then we have $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....(1)$
We will simplify the above expression by adding 1 on both the sides of the equation.
Thus, we have
$1 + S = 1 + \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Now, RHS can be expressed as follows:
$1 + S = 1 + \dfrac{3}{{1!}}.(\dfrac{1}{4}) + \dfrac{{3.5}}{{2!}}.{(\dfrac{1}{4})^2} + \dfrac{{3.5.7}}{{3!}}.{(\dfrac{1}{4})^3} + ....(1)$
Consider the expansion of${(1 - x)^{ - \dfrac{p}{q}}}$
\[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\]
Comparing (1) with the expansion, we get $p = 3$ and $p + q = 5$.
$ \Rightarrow q = 2$.
Also $\dfrac{x}{q} = \dfrac{1}{4} \Rightarrow x = \dfrac{1}{2}$
Substituting these values in the RHS of equation (1), we get
\[1 + S = {(1 - \dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(\dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(2)^{\dfrac{3}{2}}} = 2\sqrt 2 \]
Now, subtract 1 from both the sides to get S.
Therefore, $S = 2\sqrt 2 - 1$
That is, the sum of the given series is $S = 2\sqrt 2 - 1$.
Note: For any real number x such that$\left| x \right| < 1$ and rational number n, the binomial expansion of ${(1 + x)^n}$ is given by
${(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1)}}{{2!}}{x^2} + .... + \dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}{x^r} + .....$
Where $\dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}$is the coefficient of the\[{r^{th}}\]term of the series
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths