
Find the sum of the infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Answer
485.1k+ views
Hint: Let $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$. Simplify the equation by adding 1 on both sides. Use the expansion \[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\] and compare its RHS with that of S to get the value of x and hence find the value of S.
Complete step by step solution:
We have an infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
We need to find the sum of this series.
Let’s call the sum as S.
Then we have $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....(1)$
We will simplify the above expression by adding 1 on both the sides of the equation.
Thus, we have
$1 + S = 1 + \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Now, RHS can be expressed as follows:
$1 + S = 1 + \dfrac{3}{{1!}}.(\dfrac{1}{4}) + \dfrac{{3.5}}{{2!}}.{(\dfrac{1}{4})^2} + \dfrac{{3.5.7}}{{3!}}.{(\dfrac{1}{4})^3} + ....(1)$
Consider the expansion of${(1 - x)^{ - \dfrac{p}{q}}}$
\[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\]
Comparing (1) with the expansion, we get $p = 3$ and $p + q = 5$.
$ \Rightarrow q = 2$.
Also $\dfrac{x}{q} = \dfrac{1}{4} \Rightarrow x = \dfrac{1}{2}$
Substituting these values in the RHS of equation (1), we get
\[1 + S = {(1 - \dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(\dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(2)^{\dfrac{3}{2}}} = 2\sqrt 2 \]
Now, subtract 1 from both the sides to get S.
Therefore, $S = 2\sqrt 2 - 1$
That is, the sum of the given series is $S = 2\sqrt 2 - 1$.
Note: For any real number x such that$\left| x \right| < 1$ and rational number n, the binomial expansion of ${(1 + x)^n}$ is given by
${(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1)}}{{2!}}{x^2} + .... + \dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}{x^r} + .....$
Where $\dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}$is the coefficient of the\[{r^{th}}\]term of the series
Complete step by step solution:
We have an infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
We need to find the sum of this series.
Let’s call the sum as S.
Then we have $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....(1)$
We will simplify the above expression by adding 1 on both the sides of the equation.
Thus, we have
$1 + S = 1 + \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Now, RHS can be expressed as follows:
$1 + S = 1 + \dfrac{3}{{1!}}.(\dfrac{1}{4}) + \dfrac{{3.5}}{{2!}}.{(\dfrac{1}{4})^2} + \dfrac{{3.5.7}}{{3!}}.{(\dfrac{1}{4})^3} + ....(1)$
Consider the expansion of${(1 - x)^{ - \dfrac{p}{q}}}$
\[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\]
Comparing (1) with the expansion, we get $p = 3$ and $p + q = 5$.
$ \Rightarrow q = 2$.
Also $\dfrac{x}{q} = \dfrac{1}{4} \Rightarrow x = \dfrac{1}{2}$
Substituting these values in the RHS of equation (1), we get
\[1 + S = {(1 - \dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(\dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(2)^{\dfrac{3}{2}}} = 2\sqrt 2 \]
Now, subtract 1 from both the sides to get S.
Therefore, $S = 2\sqrt 2 - 1$
That is, the sum of the given series is $S = 2\sqrt 2 - 1$.
Note: For any real number x such that$\left| x \right| < 1$ and rational number n, the binomial expansion of ${(1 + x)^n}$ is given by
${(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1)}}{{2!}}{x^2} + .... + \dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}{x^r} + .....$
Where $\dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}$is the coefficient of the\[{r^{th}}\]term of the series
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
