Answer
Verified
408.9k+ views
Hint: Here in this question, we have to find the sum of finite geometric series. The geometric series is defined as the series with a constant ratio between the two successive terms. Then by considering the geometric series we have found the sum of the series.
Complete step-by-step solution:
In mathematics we have three types of series namely, arithmetic series, geometric series and harmonic series. The geometric series is defined as the series with a constant ratio between the two successive terms. The finite geometric series is generally represented as \[a,ar,a{r^2},...,a{r^n}\], where a is first term and r is a common ratio.
Now consider the series $4096 – 512 + 64 - …..$
Here the term a is known as first term. the value of a is 4096.
The r is the common ratio of the series. It is defined as \[r = \dfrac{{{a_2}}}{{{a_1}}}\]
The value of r is determined by \[r = \dfrac{{ - 512}}{{4096}} = - \dfrac{1}{8}\]
Now we have to find the sum of finite geometric series, the sum for finite geometric series is defined by \[{S_n}\]
Here the value of r is less than 1 we have a formula for the sum of geometric series and it is defined as
\[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\]
Here the value of n is 5.
Therefore by substituting the values in the formula we have
\[{S_5} = \dfrac{{4096\left( {1 - {{\left( {\dfrac{{ - 1}}{8}} \right)}^5}} \right)}}{{1 - \left( {\dfrac{{ - 1}}{8}} \right)}}\]
On simplifying we have
\[{S_5} = \dfrac{{4096\left( {1 + {{\left( {\dfrac{1}{8}} \right)}^5}} \right)}}{{1 + \dfrac{1}{8}}}\]
\[
\Rightarrow {S_5} = \dfrac{{4096\left( {1 + \dfrac{1}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32768 + 1}}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32769}}{{32768}}} \right)}}{{\dfrac{9}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096 \times 32769}}{{32768}} \times \dfrac{8}{9} \\
\Rightarrow {S_5} = 3641 \\
\]
Hence the sum of geometric series $4096 – 512 + 64 - … to\, 5$ terms is 3641.
Note: Three different forms of series are arithmetic series, geometric series and harmonic series. For the arithmetic series is the series with common differences. The geometric series is the series with a common ratio. The sum is known as the total value of the given series.
Complete step-by-step solution:
In mathematics we have three types of series namely, arithmetic series, geometric series and harmonic series. The geometric series is defined as the series with a constant ratio between the two successive terms. The finite geometric series is generally represented as \[a,ar,a{r^2},...,a{r^n}\], where a is first term and r is a common ratio.
Now consider the series $4096 – 512 + 64 - …..$
Here the term a is known as first term. the value of a is 4096.
The r is the common ratio of the series. It is defined as \[r = \dfrac{{{a_2}}}{{{a_1}}}\]
The value of r is determined by \[r = \dfrac{{ - 512}}{{4096}} = - \dfrac{1}{8}\]
Now we have to find the sum of finite geometric series, the sum for finite geometric series is defined by \[{S_n}\]
Here the value of r is less than 1 we have a formula for the sum of geometric series and it is defined as
\[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\]
Here the value of n is 5.
Therefore by substituting the values in the formula we have
\[{S_5} = \dfrac{{4096\left( {1 - {{\left( {\dfrac{{ - 1}}{8}} \right)}^5}} \right)}}{{1 - \left( {\dfrac{{ - 1}}{8}} \right)}}\]
On simplifying we have
\[{S_5} = \dfrac{{4096\left( {1 + {{\left( {\dfrac{1}{8}} \right)}^5}} \right)}}{{1 + \dfrac{1}{8}}}\]
\[
\Rightarrow {S_5} = \dfrac{{4096\left( {1 + \dfrac{1}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32768 + 1}}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32769}}{{32768}}} \right)}}{{\dfrac{9}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096 \times 32769}}{{32768}} \times \dfrac{8}{9} \\
\Rightarrow {S_5} = 3641 \\
\]
Hence the sum of geometric series $4096 – 512 + 64 - … to\, 5$ terms is 3641.
Note: Three different forms of series are arithmetic series, geometric series and harmonic series. For the arithmetic series is the series with common differences. The geometric series is the series with a common ratio. The sum is known as the total value of the given series.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell