How do you find the sum of the geometric series $4096 – 512 + 64 - …. to\,\, 5$ terms.
Answer
Verified
439.2k+ views
Hint: Here in this question, we have to find the sum of finite geometric series. The geometric series is defined as the series with a constant ratio between the two successive terms. Then by considering the geometric series we have found the sum of the series.
Complete step-by-step solution:
In mathematics we have three types of series namely, arithmetic series, geometric series and harmonic series. The geometric series is defined as the series with a constant ratio between the two successive terms. The finite geometric series is generally represented as \[a,ar,a{r^2},...,a{r^n}\], where a is first term and r is a common ratio.
Now consider the series $4096 – 512 + 64 - …..$
Here the term a is known as first term. the value of a is 4096.
The r is the common ratio of the series. It is defined as \[r = \dfrac{{{a_2}}}{{{a_1}}}\]
The value of r is determined by \[r = \dfrac{{ - 512}}{{4096}} = - \dfrac{1}{8}\]
Now we have to find the sum of finite geometric series, the sum for finite geometric series is defined by \[{S_n}\]
Here the value of r is less than 1 we have a formula for the sum of geometric series and it is defined as
\[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\]
Here the value of n is 5.
Therefore by substituting the values in the formula we have
\[{S_5} = \dfrac{{4096\left( {1 - {{\left( {\dfrac{{ - 1}}{8}} \right)}^5}} \right)}}{{1 - \left( {\dfrac{{ - 1}}{8}} \right)}}\]
On simplifying we have
\[{S_5} = \dfrac{{4096\left( {1 + {{\left( {\dfrac{1}{8}} \right)}^5}} \right)}}{{1 + \dfrac{1}{8}}}\]
\[
\Rightarrow {S_5} = \dfrac{{4096\left( {1 + \dfrac{1}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32768 + 1}}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32769}}{{32768}}} \right)}}{{\dfrac{9}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096 \times 32769}}{{32768}} \times \dfrac{8}{9} \\
\Rightarrow {S_5} = 3641 \\
\]
Hence the sum of geometric series $4096 – 512 + 64 - … to\, 5$ terms is 3641.
Note: Three different forms of series are arithmetic series, geometric series and harmonic series. For the arithmetic series is the series with common differences. The geometric series is the series with a common ratio. The sum is known as the total value of the given series.
Complete step-by-step solution:
In mathematics we have three types of series namely, arithmetic series, geometric series and harmonic series. The geometric series is defined as the series with a constant ratio between the two successive terms. The finite geometric series is generally represented as \[a,ar,a{r^2},...,a{r^n}\], where a is first term and r is a common ratio.
Now consider the series $4096 – 512 + 64 - …..$
Here the term a is known as first term. the value of a is 4096.
The r is the common ratio of the series. It is defined as \[r = \dfrac{{{a_2}}}{{{a_1}}}\]
The value of r is determined by \[r = \dfrac{{ - 512}}{{4096}} = - \dfrac{1}{8}\]
Now we have to find the sum of finite geometric series, the sum for finite geometric series is defined by \[{S_n}\]
Here the value of r is less than 1 we have a formula for the sum of geometric series and it is defined as
\[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\]
Here the value of n is 5.
Therefore by substituting the values in the formula we have
\[{S_5} = \dfrac{{4096\left( {1 - {{\left( {\dfrac{{ - 1}}{8}} \right)}^5}} \right)}}{{1 - \left( {\dfrac{{ - 1}}{8}} \right)}}\]
On simplifying we have
\[{S_5} = \dfrac{{4096\left( {1 + {{\left( {\dfrac{1}{8}} \right)}^5}} \right)}}{{1 + \dfrac{1}{8}}}\]
\[
\Rightarrow {S_5} = \dfrac{{4096\left( {1 + \dfrac{1}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32768 + 1}}{{32768}}} \right)}}{{\dfrac{{8 + 1}}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096\left( {\dfrac{{32769}}{{32768}}} \right)}}{{\dfrac{9}{8}}} \\
\Rightarrow {S_5} = \dfrac{{4096 \times 32769}}{{32768}} \times \dfrac{8}{9} \\
\Rightarrow {S_5} = 3641 \\
\]
Hence the sum of geometric series $4096 – 512 + 64 - … to\, 5$ terms is 3641.
Note: Three different forms of series are arithmetic series, geometric series and harmonic series. For the arithmetic series is the series with common differences. The geometric series is the series with a common ratio. The sum is known as the total value of the given series.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE