# Find the sum of the following series to ‘n’ terms:

$\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+............$

Last updated date: 15th Mar 2023

•

Total views: 303k

•

Views today: 4.83k

Answer

Verified

303k+ views

Hint: Find the nth term of the given series and apply $\sum{{}}$(summation) to the ${{T}_{n}}$ to get the sum of ‘n’ terms of the given series. Sum of special series can be given as $\sum{{{n}^{2}}=}\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$ and $\sum{{{n}^{3}}=}\dfrac{n{{\left( n+1 \right)}^{2}}}{2}$and$\sum{n=}\dfrac{n\left( n+1 \right)}{2}$.

Complete step by step answer:

The given series up to n terms is

$\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+............$

Let the summation of the series up to ‘n’ terms be S, we get

$S=\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+$ ………………… (i)

As we know that we can find the sum of ‘n’ terms of the series by applying summation $\left( \sum{{}} \right)$ to the nth term of that series (general term).

So, first we need to find the value of the nth term of the given series.

Now, we can observe the series S in equation (i) and observe the numerator and denominator individually.

We get that numerator of first term has one term and numerator of second term has two term $\left( {{1}^{3}},{{2}^{3}} \right)$ and third term has three terms $\left( {{1}^{3}},{{2}^{3}},{{3}^{3}} \right)$and so on. So, nth term of the series should have ‘n’ terms in the numerator as $\left( {{1}^{3}},{{2}^{3}},{{3}^{3}}...........{{n}^{3}} \right)$.

Similarly, observe the denominator terms of the series S. So, we get that there is one term in the denominator in first term of the series, two terms (1, 3) in the second term of the series, and three terms (1, 3, 5) in the third term of the series and so on. So, the nth term of the series should have n terms in the denominator. That is it can be given as (1, 3, 5,……….).

Now (1, 3, 5,………..) sequence is an A.P. and nth term of an A.P is given as

${{T}_{n}}=a+\left( n-1 \right)d$

Here ‘a’ is the first term of A.P and d is the common difference of the A.P.

So, nth term of the sequence (1, 3, 5, ……….) can be given as

${{T}_{n}}=1+\left( n-1 \right)(2)=2n-1$

Hence, the nth term of the series ‘S’ has a denominator as (1, 3, 5,……..2n-1).

So, we can write the nth term of the series ‘S’ as

${{T}_{n}}=\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+.......{{n}^{3}}}{1+3+5+..........\left( 2n-1 \right)}$ ……….. (ii)

${{T}_{n}}$is devoting the nth term of series S.

So, we can solve the numerator of equation (ii) by using the sum of special series of cube of natural numbers, given as

${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......{{n}^{3}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$ ……………. (iii)

We can find value of denominator i.e., (1+3+5+……..2n-1) by applying the formula of sum of n terms of an A.P., given as

${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ ………………. (iv)

Here ‘n’ =number of terms, ‘a’= first term and ‘d’=common difference of A.P.

Therefore, 1+3+5+…………(2n-1) has a = 1, d = 2 and n = n

So, we get from equation (iv) as

$\left( 1+3+5+........2n-1 \right)=\dfrac{n}{2}\left[ 2\times 1+\left( n-1 \right)2 \right]=\dfrac{n}{2}\left[ 2+2n-2 \right]$

$\left( 1+3+5+........2n-1 \right)={{n}^{2}}$ ………… (v)

Now, put the values of equation (iii) and (v) in equation (ii) to simplify the nth term of series S, we get

$\begin{align}

& {{T}_{n}}=\dfrac{{{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}}{{{n}^{2}}} \\

& {{T}_{n}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4{{n}^{2}}} \\

\end{align}$

${{T}_{n}}=\dfrac{{{\left( n+1 \right)}^{2}}}{4}$………. (vi)

Now, we can apply summation sign $'\sum{'}$ to the expression of ${{T}_{n}}$ to get the summation of series ‘S’ as ‘${{T}_{n}}$’ is representing the nth term of the series ‘S’, we get

$\begin{align}

& S=\sum\limits_{n=1}^{n}{{{T}_{n}}} \\

& S=\sum\limits_{n=1}^{n}{\dfrac{\left( (n+1)^2 \right)}{4}} \\

& S=\dfrac{1}{4}\sum\limits_{n-1}^{n}{\left( {{n}^{2}}+1+2n \right)} \\

\end{align}$

$S=\dfrac{1}{4}\left[ \sum\limits_{n=1}^{n}{{{n}^{2}}+}\sum\limits_{n=1}^{n}{1}+2\sum\limits_{n=1}^{n}{n} \right]$…………… (vii)

Now, we know the sum of special series can be given by following formula:

$\begin{align}

& \sum\limits_{n=1}^{n}{n}={{1}^{2}}+{{2}^{2}}+{{3}^{2}}+........{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \\

& \sum\limits_{n=1}^{n}{n}=1+2+3+.........n=\dfrac{n\left( n+1 \right)}{2} \\

\end{align}$

\[\sum\limits_{n=1}^{n}{1}=1+1+1+......1=n\]

Hence, we can put the sum of series from the above formula in the equation (vii) to get the answer.

$S=\dfrac{1}{4}\left[ \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+n+2\dfrac{n\left( n+1 \right)}{2} \right]$

Taking out ‘n’, we get

\[\begin{align}

& S=\dfrac{n}{4}\left[ \dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}+1+\left( n+1 \right) \right] \\

& S=\dfrac{n}{4}\left[ \dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}+n+2 \right] \\

\end{align}\]

Taking the LCM, we get

$\begin{align}

& S=\dfrac{n}{4}\left[ \dfrac{\left( n+1 \right)\left( 2n+1 \right)+6n+12}{6} \right] \\

& S=\dfrac{n}{24}\left[ 2{{n}^{2}}+2n+n+1+6n+12 \right] \\

& S=\dfrac{n\left( 2{{n}^{2}}+9n+13 \right)}{24} \\

\end{align}$

Hence, the sum of series given in the problem is $\dfrac{n\left( 2{{n}^{2}}+9n+13 \right)}{24}$.

Note: We can find the sum by taking ${{T}_{n}}=\dfrac{{{\left( n+1 \right)}^{2}}}{4}$itself without expanding it in following ways.

$\dfrac{1}{4}\sum\limits_{n=1}^{n}{{{\left( n+1 \right)}^{2}}=\dfrac{1}{4}\left[ {{2}^{2}}+{{3}^{2}}+{{4}^{2}}+.......{{\left( n+1 \right)}^{2}} \right]}=\dfrac{1}{4}\left[ {{1}^{2}}+{{2}^{2}}+........{{\left( n+1 \right)}^{2}}-{{1}^{2}} \right]$

Now put (n+1) in place of ‘n’ in the formula of sum of series $\sum{{{n}^{2}}}$ i.e., $\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$ .

Hence, we will get

$\dfrac{1}{4}\left( \dfrac{\left( n+1 \right)\left( n+2 \right)\left( 2n+3 \right)}{6}-1 \right)$

We will get the same answer as found in the solution.

Don’t confuse it with the sign of $\sum{{}}$(summation). It represents a series in its nth term (general term) in very short form. So, it’s nothing but a representation of any series in a short way. And be clear with the summation of the special series $\sum{n},\sum{{{n}^{2}},}\sum{{{n}^{3}}}$ . Without the summation of these series, we will not be able to solve these kinds of series.

Getting ${{T}_{n}}$ and hence applying $\sum{{}}$ (summation) to ${{T}_{n}}$is the key point of the question.

Complete step by step answer:

The given series up to n terms is

$\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+............$

Let the summation of the series up to ‘n’ terms be S, we get

$S=\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+$ ………………… (i)

As we know that we can find the sum of ‘n’ terms of the series by applying summation $\left( \sum{{}} \right)$ to the nth term of that series (general term).

So, first we need to find the value of the nth term of the given series.

Now, we can observe the series S in equation (i) and observe the numerator and denominator individually.

We get that numerator of first term has one term and numerator of second term has two term $\left( {{1}^{3}},{{2}^{3}} \right)$ and third term has three terms $\left( {{1}^{3}},{{2}^{3}},{{3}^{3}} \right)$and so on. So, nth term of the series should have ‘n’ terms in the numerator as $\left( {{1}^{3}},{{2}^{3}},{{3}^{3}}...........{{n}^{3}} \right)$.

Similarly, observe the denominator terms of the series S. So, we get that there is one term in the denominator in first term of the series, two terms (1, 3) in the second term of the series, and three terms (1, 3, 5) in the third term of the series and so on. So, the nth term of the series should have n terms in the denominator. That is it can be given as (1, 3, 5,……….).

Now (1, 3, 5,………..) sequence is an A.P. and nth term of an A.P is given as

${{T}_{n}}=a+\left( n-1 \right)d$

Here ‘a’ is the first term of A.P and d is the common difference of the A.P.

So, nth term of the sequence (1, 3, 5, ……….) can be given as

${{T}_{n}}=1+\left( n-1 \right)(2)=2n-1$

Hence, the nth term of the series ‘S’ has a denominator as (1, 3, 5,……..2n-1).

So, we can write the nth term of the series ‘S’ as

${{T}_{n}}=\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+.......{{n}^{3}}}{1+3+5+..........\left( 2n-1 \right)}$ ……….. (ii)

${{T}_{n}}$is devoting the nth term of series S.

So, we can solve the numerator of equation (ii) by using the sum of special series of cube of natural numbers, given as

${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......{{n}^{3}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$ ……………. (iii)

We can find value of denominator i.e., (1+3+5+……..2n-1) by applying the formula of sum of n terms of an A.P., given as

${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ ………………. (iv)

Here ‘n’ =number of terms, ‘a’= first term and ‘d’=common difference of A.P.

Therefore, 1+3+5+…………(2n-1) has a = 1, d = 2 and n = n

So, we get from equation (iv) as

$\left( 1+3+5+........2n-1 \right)=\dfrac{n}{2}\left[ 2\times 1+\left( n-1 \right)2 \right]=\dfrac{n}{2}\left[ 2+2n-2 \right]$

$\left( 1+3+5+........2n-1 \right)={{n}^{2}}$ ………… (v)

Now, put the values of equation (iii) and (v) in equation (ii) to simplify the nth term of series S, we get

$\begin{align}

& {{T}_{n}}=\dfrac{{{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}}{{{n}^{2}}} \\

& {{T}_{n}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4{{n}^{2}}} \\

\end{align}$

${{T}_{n}}=\dfrac{{{\left( n+1 \right)}^{2}}}{4}$………. (vi)

Now, we can apply summation sign $'\sum{'}$ to the expression of ${{T}_{n}}$ to get the summation of series ‘S’ as ‘${{T}_{n}}$’ is representing the nth term of the series ‘S’, we get

$\begin{align}

& S=\sum\limits_{n=1}^{n}{{{T}_{n}}} \\

& S=\sum\limits_{n=1}^{n}{\dfrac{\left( (n+1)^2 \right)}{4}} \\

& S=\dfrac{1}{4}\sum\limits_{n-1}^{n}{\left( {{n}^{2}}+1+2n \right)} \\

\end{align}$

$S=\dfrac{1}{4}\left[ \sum\limits_{n=1}^{n}{{{n}^{2}}+}\sum\limits_{n=1}^{n}{1}+2\sum\limits_{n=1}^{n}{n} \right]$…………… (vii)

Now, we know the sum of special series can be given by following formula:

$\begin{align}

& \sum\limits_{n=1}^{n}{n}={{1}^{2}}+{{2}^{2}}+{{3}^{2}}+........{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \\

& \sum\limits_{n=1}^{n}{n}=1+2+3+.........n=\dfrac{n\left( n+1 \right)}{2} \\

\end{align}$

\[\sum\limits_{n=1}^{n}{1}=1+1+1+......1=n\]

Hence, we can put the sum of series from the above formula in the equation (vii) to get the answer.

$S=\dfrac{1}{4}\left[ \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+n+2\dfrac{n\left( n+1 \right)}{2} \right]$

Taking out ‘n’, we get

\[\begin{align}

& S=\dfrac{n}{4}\left[ \dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}+1+\left( n+1 \right) \right] \\

& S=\dfrac{n}{4}\left[ \dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}+n+2 \right] \\

\end{align}\]

Taking the LCM, we get

$\begin{align}

& S=\dfrac{n}{4}\left[ \dfrac{\left( n+1 \right)\left( 2n+1 \right)+6n+12}{6} \right] \\

& S=\dfrac{n}{24}\left[ 2{{n}^{2}}+2n+n+1+6n+12 \right] \\

& S=\dfrac{n\left( 2{{n}^{2}}+9n+13 \right)}{24} \\

\end{align}$

Hence, the sum of series given in the problem is $\dfrac{n\left( 2{{n}^{2}}+9n+13 \right)}{24}$.

Note: We can find the sum by taking ${{T}_{n}}=\dfrac{{{\left( n+1 \right)}^{2}}}{4}$itself without expanding it in following ways.

$\dfrac{1}{4}\sum\limits_{n=1}^{n}{{{\left( n+1 \right)}^{2}}=\dfrac{1}{4}\left[ {{2}^{2}}+{{3}^{2}}+{{4}^{2}}+.......{{\left( n+1 \right)}^{2}} \right]}=\dfrac{1}{4}\left[ {{1}^{2}}+{{2}^{2}}+........{{\left( n+1 \right)}^{2}}-{{1}^{2}} \right]$

Now put (n+1) in place of ‘n’ in the formula of sum of series $\sum{{{n}^{2}}}$ i.e., $\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$ .

Hence, we will get

$\dfrac{1}{4}\left( \dfrac{\left( n+1 \right)\left( n+2 \right)\left( 2n+3 \right)}{6}-1 \right)$

We will get the same answer as found in the solution.

Don’t confuse it with the sign of $\sum{{}}$(summation). It represents a series in its nth term (general term) in very short form. So, it’s nothing but a representation of any series in a short way. And be clear with the summation of the special series $\sum{n},\sum{{{n}^{2}},}\sum{{{n}^{3}}}$ . Without the summation of these series, we will not be able to solve these kinds of series.

Getting ${{T}_{n}}$ and hence applying $\sum{{}}$ (summation) to ${{T}_{n}}$is the key point of the question.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE