Find the sum of odd integers from 1 to 2001.
Last updated date: 23rd Mar 2023
•
Total views: 309.9k
•
Views today: 6.89k
Answer
309.9k+ views
Hint: Here, we will be using the formulas for ${n^{{\text{th}}}}$ term and the sum of first $n$ terms of an AP.
Since, the odd integers occurring from 1 to 2001 are $1,3,5,.....,1997,1999,2001$.
Here, ${a_1} = 1$, $d = 2$ and ${a_n} = 2001$(last term)
Clearly, the above series have a common difference of 2 and represents an arithmetic progression.
For an AP having the first term as ${a_1}$ and common difference as $d$, ${n^{{\text{th}}}}$ term of the AP is given by ${a_n} = {a_1} + \left( {n - 1} \right)d$
For the given series, ${n^{{\text{th}}}}$term (last term) of the AP is given by $2001 = 1 + \left( {n - 1} \right) \times 2 \Rightarrow 2001 = 1 + 2n - 2 \Rightarrow 2n = 2002 \Rightarrow n = 1001$
Therefore, the total number of terms in the given series is 1001.
Also, the formula for the sum of first $n$ terms of the AP is given by ${{\text{S}}_n} = \dfrac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]$
So, the required sum of the given series is given by ${{\text{S}}_n} = \dfrac{{1001}}{2}\left[ {2\left( 1 \right) + \left( {1001 - 1} \right) \times 2} \right] = \dfrac{{1001}}{2}\left[ {2 + 2000} \right] = \dfrac{{1001 \times 2002}}{2} = 1002001$
Note: The difference between any two consecutive odd integers and between any two consecutive even integers is two because in between any two consecutive odd integers, one even integer occurs and similarly in between any two consecutive even integers, one odd integer occurs. The important thing in such types of problems is to identify the type of progression.
Since, the odd integers occurring from 1 to 2001 are $1,3,5,.....,1997,1999,2001$.
Here, ${a_1} = 1$, $d = 2$ and ${a_n} = 2001$(last term)
Clearly, the above series have a common difference of 2 and represents an arithmetic progression.
For an AP having the first term as ${a_1}$ and common difference as $d$, ${n^{{\text{th}}}}$ term of the AP is given by ${a_n} = {a_1} + \left( {n - 1} \right)d$
For the given series, ${n^{{\text{th}}}}$term (last term) of the AP is given by $2001 = 1 + \left( {n - 1} \right) \times 2 \Rightarrow 2001 = 1 + 2n - 2 \Rightarrow 2n = 2002 \Rightarrow n = 1001$
Therefore, the total number of terms in the given series is 1001.
Also, the formula for the sum of first $n$ terms of the AP is given by ${{\text{S}}_n} = \dfrac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]$
So, the required sum of the given series is given by ${{\text{S}}_n} = \dfrac{{1001}}{2}\left[ {2\left( 1 \right) + \left( {1001 - 1} \right) \times 2} \right] = \dfrac{{1001}}{2}\left[ {2 + 2000} \right] = \dfrac{{1001 \times 2002}}{2} = 1002001$
Note: The difference between any two consecutive odd integers and between any two consecutive even integers is two because in between any two consecutive odd integers, one even integer occurs and similarly in between any two consecutive even integers, one odd integer occurs. The important thing in such types of problems is to identify the type of progression.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
