
Find the sum of first n terms of:
i) 4 + 44 + 444 +....
ii) 0.7 + 0.77 + 0.777 +....
Answer
498.7k+ views
Hint: We need to convert the given terms into particular series where we can apply some formula to get the desired result.
i)4 + 44 + 444 +.... up to n terms
4(1+11+111+.....up to n terms)
Dividing and multiplying the above series of 9, we get
$$ \Rightarrow \dfrac{4}{9}\left( {9 + 99 + 999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 - 1) + ({{10}^2} - 1) + ....up\;to\;n\;terms} \right]$$
Separating the terms inside brackets,
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 + {{10}^2} + .... + {{10}^n}) - (1 + 1 + 1 + ...n\;times)} \right]$$
The terms are $$10 + {10^2} + .... + {10^n}$$ in geometric progression (G.P.) with a = 10, r = 10, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],r > 1$$
$$ \Rightarrow \dfrac{4}{9} \cdot 10\left[ {\dfrac{{({{10}^n} - 1)}}{{(10 - 1)}}} \right] - n(1)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
$\therefore $ The sum of 4 + 44 + 444 +.... up to n terms = $$\dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
ii)We have to find the Sum = 0.7 + 0.77 + 0.777 +....up to n terms
Dividing and multiplying the above series with 9, we get
$$ \Rightarrow \dfrac{7}{9}\left( {0.9 + 0.99 + 0.999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 - 0.1) + (1 - 0.01) + (1 - 0.001)....up\;to\;n\;terms} \right]$$
Separating the terms inside the bracket
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 + 1 + 1 + ...n\;times) - \left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)} \right]$$
The terms $$\left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)$$ are in G.P. with a = $$\dfrac{1}{{10}}$$, r = $$\dfrac{1}{{10}}$$, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],r < 1$$
$$ \Rightarrow \dfrac{7}{9}\left[ {n - 0.1 \times \dfrac{{1 - {{(0.1)}^n}}}{{1 - 0.1}}} \right]$$
$$ \Rightarrow \dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
$\therefore $ The sum of 0.7 + 0.77 + 0.777 +....up to n terms = $$\dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
Note:
We need to follow the step by step procedure just as shown above to get the solution.
We have the sum of first ‘n’ terms in a geometric progression with first term as ‘a’ and common ratio as ‘r’ is given by
$${S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],\;when\,r > 1$$
$${S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],\;when\;r < 1$$.
i)4 + 44 + 444 +.... up to n terms
4(1+11+111+.....up to n terms)
Dividing and multiplying the above series of 9, we get
$$ \Rightarrow \dfrac{4}{9}\left( {9 + 99 + 999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 - 1) + ({{10}^2} - 1) + ....up\;to\;n\;terms} \right]$$
Separating the terms inside brackets,
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 + {{10}^2} + .... + {{10}^n}) - (1 + 1 + 1 + ...n\;times)} \right]$$
The terms are $$10 + {10^2} + .... + {10^n}$$ in geometric progression (G.P.) with a = 10, r = 10, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],r > 1$$
$$ \Rightarrow \dfrac{4}{9} \cdot 10\left[ {\dfrac{{({{10}^n} - 1)}}{{(10 - 1)}}} \right] - n(1)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
$\therefore $ The sum of 4 + 44 + 444 +.... up to n terms = $$\dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
ii)We have to find the Sum = 0.7 + 0.77 + 0.777 +....up to n terms
Dividing and multiplying the above series with 9, we get
$$ \Rightarrow \dfrac{7}{9}\left( {0.9 + 0.99 + 0.999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 - 0.1) + (1 - 0.01) + (1 - 0.001)....up\;to\;n\;terms} \right]$$
Separating the terms inside the bracket
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 + 1 + 1 + ...n\;times) - \left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)} \right]$$
The terms $$\left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)$$ are in G.P. with a = $$\dfrac{1}{{10}}$$, r = $$\dfrac{1}{{10}}$$, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],r < 1$$
$$ \Rightarrow \dfrac{7}{9}\left[ {n - 0.1 \times \dfrac{{1 - {{(0.1)}^n}}}{{1 - 0.1}}} \right]$$
$$ \Rightarrow \dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
$\therefore $ The sum of 0.7 + 0.77 + 0.777 +....up to n terms = $$\dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
Note:
We need to follow the step by step procedure just as shown above to get the solution.
We have the sum of first ‘n’ terms in a geometric progression with first term as ‘a’ and common ratio as ‘r’ is given by
$${S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],\;when\,r > 1$$
$${S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],\;when\;r < 1$$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

