Find the sum of first n terms of:
i) 4 + 44 + 444 +....
ii) 0.7 + 0.77 + 0.777 +....
Last updated date: 22nd Mar 2023
•
Total views: 209.5k
•
Views today: 5.87k
Answer
209.5k+ views
Hint: We need to convert the given terms into particular series where we can apply some formula to get the desired result.
i)4 + 44 + 444 +.... up to n terms
4(1+11+111+.....up to n terms)
Dividing and multiplying the above series of 9, we get
$$ \Rightarrow \dfrac{4}{9}\left( {9 + 99 + 999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 - 1) + ({{10}^2} - 1) + ....up\;to\;n\;terms} \right]$$
Separating the terms inside brackets,
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 + {{10}^2} + .... + {{10}^n}) - (1 + 1 + 1 + ...n\;times)} \right]$$
The terms are $$10 + {10^2} + .... + {10^n}$$ in geometric progression (G.P.) with a = 10, r = 10, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],r > 1$$
$$ \Rightarrow \dfrac{4}{9} \cdot 10\left[ {\dfrac{{({{10}^n} - 1)}}{{(10 - 1)}}} \right] - n(1)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
$\therefore $ The sum of 4 + 44 + 444 +.... up to n terms = $$\dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
ii)We have to find the Sum = 0.7 + 0.77 + 0.777 +....up to n terms
Dividing and multiplying the above series with 9, we get
$$ \Rightarrow \dfrac{7}{9}\left( {0.9 + 0.99 + 0.999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 - 0.1) + (1 - 0.01) + (1 - 0.001)....up\;to\;n\;terms} \right]$$
Separating the terms inside the bracket
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 + 1 + 1 + ...n\;times) - \left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)} \right]$$
The terms $$\left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)$$ are in G.P. with a = $$\dfrac{1}{{10}}$$, r = $$\dfrac{1}{{10}}$$, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],r < 1$$
$$ \Rightarrow \dfrac{7}{9}\left[ {n - 0.1 \times \dfrac{{1 - {{(0.1)}^n}}}{{1 - 0.1}}} \right]$$
$$ \Rightarrow \dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
$\therefore $ The sum of 0.7 + 0.77 + 0.777 +....up to n terms = $$\dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
Note:
We need to follow the step by step procedure just as shown above to get the solution.
We have the sum of first ‘n’ terms in a geometric progression with first term as ‘a’ and common ratio as ‘r’ is given by
$${S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],\;when\,r > 1$$
$${S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],\;when\;r < 1$$.
i)4 + 44 + 444 +.... up to n terms
4(1+11+111+.....up to n terms)
Dividing and multiplying the above series of 9, we get
$$ \Rightarrow \dfrac{4}{9}\left( {9 + 99 + 999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 - 1) + ({{10}^2} - 1) + ....up\;to\;n\;terms} \right]$$
Separating the terms inside brackets,
$$ \Rightarrow \dfrac{4}{9}\left[ {(10 + {{10}^2} + .... + {{10}^n}) - (1 + 1 + 1 + ...n\;times)} \right]$$
The terms are $$10 + {10^2} + .... + {10^n}$$ in geometric progression (G.P.) with a = 10, r = 10, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],r > 1$$
$$ \Rightarrow \dfrac{4}{9} \cdot 10\left[ {\dfrac{{({{10}^n} - 1)}}{{(10 - 1)}}} \right] - n(1)$$
$$ \Rightarrow \dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
$\therefore $ The sum of 4 + 44 + 444 +.... up to n terms = $$\dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$
ii)We have to find the Sum = 0.7 + 0.77 + 0.777 +....up to n terms
Dividing and multiplying the above series with 9, we get
$$ \Rightarrow \dfrac{7}{9}\left( {0.9 + 0.99 + 0.999 + ....up\;to\;n\;terms} \right)$$
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 - 0.1) + (1 - 0.01) + (1 - 0.001)....up\;to\;n\;terms} \right]$$
Separating the terms inside the bracket
$$ \Rightarrow \dfrac{7}{9}\left[ {(1 + 1 + 1 + ...n\;times) - \left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)} \right]$$
The terms $$\left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)$$ are in G.P. with a = $$\dfrac{1}{{10}}$$, r = $$\dfrac{1}{{10}}$$, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],r < 1$$
$$ \Rightarrow \dfrac{7}{9}\left[ {n - 0.1 \times \dfrac{{1 - {{(0.1)}^n}}}{{1 - 0.1}}} \right]$$
$$ \Rightarrow \dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
$\therefore $ The sum of 0.7 + 0.77 + 0.777 +....up to n terms = $$\dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$
Note:
We need to follow the step by step procedure just as shown above to get the solution.
We have the sum of first ‘n’ terms in a geometric progression with first term as ‘a’ and common ratio as ‘r’ is given by
$${S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],\;when\,r > 1$$
$${S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],\;when\;r < 1$$.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
