# Find the sum of first n terms of:

i) 4 + 44 + 444 +....

ii) 0.7 + 0.77 + 0.777 +....

Answer

Verified

265.9k+ views

Hint: We need to convert the given terms into particular series where we can apply some formula to get the desired result.

i)4 + 44 + 444 +.... up to n terms

4(1+11+111+.....up to n terms)

Dividing and multiplying the above series of 9, we get

$$ \Rightarrow \dfrac{4}{9}\left( {9 + 99 + 999 + ....up\;to\;n\;terms} \right)$$

$$ \Rightarrow \dfrac{4}{9}\left[ {(10 - 1) + ({{10}^2} - 1) + ....up\;to\;n\;terms} \right]$$

Separating the terms inside brackets,

$$ \Rightarrow \dfrac{4}{9}\left[ {(10 + {{10}^2} + .... + {{10}^n}) - (1 + 1 + 1 + ...n\;times)} \right]$$

The terms are $$10 + {10^2} + .... + {10^n}$$ in geometric progression (G.P.) with a = 10, r = 10, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],r > 1$$

$$ \Rightarrow \dfrac{4}{9} \cdot 10\left[ {\dfrac{{({{10}^n} - 1)}}{{(10 - 1)}}} \right] - n(1)$$

$$ \Rightarrow \dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$

$\therefore $ The sum of 4 + 44 + 444 +.... up to n terms = $$\dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$

ii)We have to find the Sum = 0.7 + 0.77 + 0.777 +....up to n terms

Dividing and multiplying the above series with 9, we get

$$ \Rightarrow \dfrac{7}{9}\left( {0.9 + 0.99 + 0.999 + ....up\;to\;n\;terms} \right)$$

$$ \Rightarrow \dfrac{7}{9}\left[ {(1 - 0.1) + (1 - 0.01) + (1 - 0.001)....up\;to\;n\;terms} \right]$$

Separating the terms inside the bracket

$$ \Rightarrow \dfrac{7}{9}\left[ {(1 + 1 + 1 + ...n\;times) - \left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)} \right]$$

The terms $$\left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)$$ are in G.P. with a = $$\dfrac{1}{{10}}$$, r = $$\dfrac{1}{{10}}$$, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],r < 1$$

$$ \Rightarrow \dfrac{7}{9}\left[ {n - 0.1 \times \dfrac{{1 - {{(0.1)}^n}}}{{1 - 0.1}}} \right]$$

$$ \Rightarrow \dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$

$\therefore $ The sum of 0.7 + 0.77 + 0.777 +....up to n terms = $$\dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$

Note:

We need to follow the step by step procedure just as shown above to get the solution.

We have the sum of first ‘n’ terms in a geometric progression with first term as ‘a’ and common ratio as ‘r’ is given by

$${S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],\;when\,r > 1$$

$${S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],\;when\;r < 1$$.

i)4 + 44 + 444 +.... up to n terms

4(1+11+111+.....up to n terms)

Dividing and multiplying the above series of 9, we get

$$ \Rightarrow \dfrac{4}{9}\left( {9 + 99 + 999 + ....up\;to\;n\;terms} \right)$$

$$ \Rightarrow \dfrac{4}{9}\left[ {(10 - 1) + ({{10}^2} - 1) + ....up\;to\;n\;terms} \right]$$

Separating the terms inside brackets,

$$ \Rightarrow \dfrac{4}{9}\left[ {(10 + {{10}^2} + .... + {{10}^n}) - (1 + 1 + 1 + ...n\;times)} \right]$$

The terms are $$10 + {10^2} + .... + {10^n}$$ in geometric progression (G.P.) with a = 10, r = 10, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],r > 1$$

$$ \Rightarrow \dfrac{4}{9} \cdot 10\left[ {\dfrac{{({{10}^n} - 1)}}{{(10 - 1)}}} \right] - n(1)$$

$$ \Rightarrow \dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$

$\therefore $ The sum of 4 + 44 + 444 +.... up to n terms = $$\dfrac{4}{9}\left[ {\dfrac{{10}}{9}\left( {{{10}^n} - 1} \right) - n} \right]$$

ii)We have to find the Sum = 0.7 + 0.77 + 0.777 +....up to n terms

Dividing and multiplying the above series with 9, we get

$$ \Rightarrow \dfrac{7}{9}\left( {0.9 + 0.99 + 0.999 + ....up\;to\;n\;terms} \right)$$

$$ \Rightarrow \dfrac{7}{9}\left[ {(1 - 0.1) + (1 - 0.01) + (1 - 0.001)....up\;to\;n\;terms} \right]$$

Separating the terms inside the bracket

$$ \Rightarrow \dfrac{7}{9}\left[ {(1 + 1 + 1 + ...n\;times) - \left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)} \right]$$

The terms $$\left( {\dfrac{1}{{10}} + \dfrac{1}{{100}} + \dfrac{1}{{1000}} + ....up\;to\;n\;terms} \right)$$ are in G.P. with a = $$\dfrac{1}{{10}}$$, r = $$\dfrac{1}{{10}}$$, using the formula of sum of n terms of G.P. $$ \Rightarrow {S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],r < 1$$

$$ \Rightarrow \dfrac{7}{9}\left[ {n - 0.1 \times \dfrac{{1 - {{(0.1)}^n}}}{{1 - 0.1}}} \right]$$

$$ \Rightarrow \dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$

$\therefore $ The sum of 0.7 + 0.77 + 0.777 +....up to n terms = $$\dfrac{7}{{81}}\left[ {9n - 1 + {{10}^{ - n}}} \right]$$

Note:

We need to follow the step by step procedure just as shown above to get the solution.

We have the sum of first ‘n’ terms in a geometric progression with first term as ‘a’ and common ratio as ‘r’ is given by

$${S_n} = \left[ {\dfrac{{a({r^n} - 1)}}{{(r - 1)}}} \right],\;when\,r > 1$$

$${S_n} = \left[ {\dfrac{{a(1 - {r^n})}}{{(1 - r)}}} \right],\;when\;r < 1$$.

Last updated date: 26th Sep 2023

•

Total views: 265.9k

•

Views today: 2.65k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers