Courses
Courses for Kids
Free study material
Free LIVE classes
More LIVE
Join Vedantu’s FREE Mastercalss

# Find the sum of first n odd numbers. Verified
365.7k+ views
Hint- The formula for the sum of an A.P is${{\text{S}}_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, where n is number of terms.

We have to find out the sum of first n odd numbers.
$\Rightarrow 1 + 3 + 5 + 7 + .........................n{\text{ terms}}{\text{.}}$
As we see that $\left( {1,3,5,7..............n} \right)$makes an A.P
Where, number of terms of the series${\text{ = n}}$
First term $\left( {{a_1}} \right) = 1$
Common difference$\left( d \right) = \left( {3 - 1} \right) = \left( {5 - 3} \right) = 2$
Now apply the formula of sum of an A.P
${{\text{S}}_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right) \\ \Rightarrow {{\text{S}}_n} = \dfrac{n}{2}\left( {2 \times 1 + \left( {n - 1} \right)2} \right) \\ \Rightarrow {{\text{S}}_n} = \dfrac{n}{2}\left( {2 + \left( {n - 1} \right)2} \right) = n\left( {1 + n - 1} \right) = {n^2} \\$

Note- In such types of questions always remember the basic formulas of an A.P which is stated above, then from the given condition calculate the values of first term and common difference, then apply the formula of sum of an A.P we will get the required sum of first n odd numbers.
Last updated date: 29th Sep 2023
Total views: 365.7k
Views today: 10.65k