Find the sum of first 100 terms -5,-4,-3,-2,-1,0,1,2………using Gauss method.
Last updated date: 29th Mar 2023
•
Total views: 308.1k
•
Views today: 4.84k
Answer
308.1k+ views
Hint: Gauss method is applicable only to arithmetic progression and from this we can conclude that the sequence is in AP and apply the suitable formula to find the sum of the given series.
Complete step-by-step answer:
The given series is -5,-4,-3,-2,-1,0,1,2………
We can conclude and say that this series is in Arithmetic Progression
Since, ${T_3} - {T_2} = {T_2} - {T_1}$ = -4-(-5)=1=d=common difference
We have to find out the sum of first 100 terms of the series using Gauss method
We know that Gauss formula is given by ${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
In the given series the first term=-5, last term is unknown
So, let us find out the nth term (last term) by making use of ${T_n}$ formula of AP
We know that the nth term ${T_n}$ of an AP is given by ${T_n} = a + (n - 1)d$
Here a=-5, n=100, d=1
Let’s substitute these values in the formula
So, we get ${T_{100}}$ =-5+(100-1)1
=-5+99
${T_{100}}$ =94=last term
We have to find out the sum of the first 100 terms by Gauss formula
${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
Here a=-5, d=1, last term=100
So, we can write
${S_{100}} = \dfrac{{100}}{2}[ - 5 + 94]$
=50[89]
=4,450
So, we can write ${S_{100}} = 4450$
Note: In this question ,we have been asked to find out the sum by Gaussian method , if it was not mentioned, we can find out the sum of the series by making use of an alternate formula.
Complete step-by-step answer:
The given series is -5,-4,-3,-2,-1,0,1,2………
We can conclude and say that this series is in Arithmetic Progression
Since, ${T_3} - {T_2} = {T_2} - {T_1}$ = -4-(-5)=1=d=common difference
We have to find out the sum of first 100 terms of the series using Gauss method
We know that Gauss formula is given by ${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
In the given series the first term=-5, last term is unknown
So, let us find out the nth term (last term) by making use of ${T_n}$ formula of AP
We know that the nth term ${T_n}$ of an AP is given by ${T_n} = a + (n - 1)d$
Here a=-5, n=100, d=1
Let’s substitute these values in the formula
So, we get ${T_{100}}$ =-5+(100-1)1
=-5+99
${T_{100}}$ =94=last term
We have to find out the sum of the first 100 terms by Gauss formula
${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
Here a=-5, d=1, last term=100
So, we can write
${S_{100}} = \dfrac{{100}}{2}[ - 5 + 94]$
=50[89]
=4,450
So, we can write ${S_{100}} = 4450$
Note: In this question ,we have been asked to find out the sum by Gaussian method , if it was not mentioned, we can find out the sum of the series by making use of an alternate formula.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
