
Find the sum of first 100 terms -5,-4,-3,-2,-1,0,1,2………using Gauss method.
Answer
533.7k+ views
Hint: Gauss method is applicable only to arithmetic progression and from this we can conclude that the sequence is in AP and apply the suitable formula to find the sum of the given series.
Complete step-by-step answer:
The given series is -5,-4,-3,-2,-1,0,1,2………
We can conclude and say that this series is in Arithmetic Progression
Since, ${T_3} - {T_2} = {T_2} - {T_1}$ = -4-(-5)=1=d=common difference
We have to find out the sum of first 100 terms of the series using Gauss method
We know that Gauss formula is given by ${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
In the given series the first term=-5, last term is unknown
So, let us find out the nth term (last term) by making use of ${T_n}$ formula of AP
We know that the nth term ${T_n}$ of an AP is given by ${T_n} = a + (n - 1)d$
Here a=-5, n=100, d=1
Let’s substitute these values in the formula
So, we get ${T_{100}}$ =-5+(100-1)1
=-5+99
${T_{100}}$ =94=last term
We have to find out the sum of the first 100 terms by Gauss formula
${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
Here a=-5, d=1, last term=100
So, we can write
${S_{100}} = \dfrac{{100}}{2}[ - 5 + 94]$
=50[89]
=4,450
So, we can write ${S_{100}} = 4450$
Note: In this question ,we have been asked to find out the sum by Gaussian method , if it was not mentioned, we can find out the sum of the series by making use of an alternate formula.
Complete step-by-step answer:
The given series is -5,-4,-3,-2,-1,0,1,2………
We can conclude and say that this series is in Arithmetic Progression
Since, ${T_3} - {T_2} = {T_2} - {T_1}$ = -4-(-5)=1=d=common difference
We have to find out the sum of first 100 terms of the series using Gauss method
We know that Gauss formula is given by ${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
In the given series the first term=-5, last term is unknown
So, let us find out the nth term (last term) by making use of ${T_n}$ formula of AP
We know that the nth term ${T_n}$ of an AP is given by ${T_n} = a + (n - 1)d$
Here a=-5, n=100, d=1
Let’s substitute these values in the formula
So, we get ${T_{100}}$ =-5+(100-1)1
=-5+99
${T_{100}}$ =94=last term
We have to find out the sum of the first 100 terms by Gauss formula
${S_n} = \dfrac{n}{2}[first{\text{ }}term + last{\text{ }}term]$
Here a=-5, d=1, last term=100
So, we can write
${S_{100}} = \dfrac{{100}}{2}[ - 5 + 94]$
=50[89]
=4,450
So, we can write ${S_{100}} = 4450$
Note: In this question ,we have been asked to find out the sum by Gaussian method , if it was not mentioned, we can find out the sum of the series by making use of an alternate formula.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
