Answer
Verified
491.7k+ views
Hint: Take -7 + 24i = a + bi, where a = -7 and b = 24. Assume the square root of $\left( -7+24i \right)$ equal to $\left( x+iy \right)$. Take square and solve the equation obtained. Find the equation connecting x, y, a and b. Then find the roots.
Complete step-by-step answer:
Let consider a complex number a + ib.
Let the square root of (a + ib) be x + iy
That is $\sqrt{a+ib}=x+iy\text{, where }x,y\in R$
Now square on both sides,
$\begin{align}
& {{\left( \sqrt{a+ib} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& \Rightarrow a+ib={{x}^{2}}+2iy+{{i}^{2}}{{y}^{2}} \\
\end{align}$
We know ${{i}^{2}}=-1$
$\begin{align}
& \therefore a+ib={{x}^{2}}+2iy+\left( -1 \right){{y}^{2}} \\
& a+ib={{x}^{2}}-{{y}^{2}}+2iyx...............\left( 1 \right) \\
\end{align}$
Let us take ${{x}^{2}}-{{y}^{2}}=a..............\left( 2 \right)\text{ }\because {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$
$2xy=b.......................\left( 3 \right)$
$\begin{align}
& {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( {{x}^{2}}={{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{a}^{2}}+{{b}^{2}} \\
\end{align}$
Take square root on both sides.
$\begin{align}
& \sqrt{{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}................\left( 4 \right) \\
\end{align}$
Add equation (2) and equation (4).
\[\dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}-{{y}^{2}}=a\text{ } \\
\end{align}}{2{{x}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}+a}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{matrix}
\therefore {{x}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2} \\
\therefore x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}} \\
\end{matrix}\]
Now subtract equation (2) and equation (4).
\[\begin{align}
& \dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {}^{-}{{x}^{2\left( + \right)}}-{{y}^{2}}={}^{-}a \\
\end{align}}{2{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}-a} \\
& {{y}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}\ \ \ \ \therefore y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}} \\
\end{align}\]
Now we have got the value of x and y.
$x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}\ \ and\ y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}\ .............\left( 5 \right)$
We have been asked to find the square root of (-7 +24i)
$\sqrt{\left( -7+24i \right)}=x+iy$ i.e., take square root of (-7 + 24i) equal to x + iy
Where a + ib = -7 + 24i
$\therefore $ a = -7
b = 24
Now squaring on both sides;
$\begin{align}
& {{\left( \sqrt{-7+24i} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& -7+24i={{x}^{2}}+2xyi+{{\left( iy \right)}^{2}} \\
& \therefore {{i}^{2}}=-1 \\
& \Rightarrow -7+24i={{x}^{2}}-{{y}^{2}}+2xyi..............\left( 6 \right) \\
\end{align}$
Now compare equation (1) and equation (6) which is similar.
$\begin{align}
& \therefore {{x}^{2}}-{{y}^{2}}=a\Rightarrow {{x}^{2}}-{{y}^{2}}=-7 \\
& 2xy=b\Rightarrow 2xy=24 \\
\end{align}$
Now substitute the value of a = -7 and b = 24 in equation (5).
$\begin{align}
& x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}+\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25-7}{2}}=\pm \sqrt{\dfrac{18}{2}}=\pm 3 \\
& y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}-\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25+7}{2}}=\pm \sqrt{\dfrac{32}{2}}=\pm 4 \\
& \therefore x+iy=\pm 3\pm 4 \\
\end{align}$
$\therefore $The roots are $+\left( 3+i4 \right)\ \ and\ \ -\left( 3+i4 \right)$.
Note: The proof of $\sqrt{a+ib}=x+iy$ is similar to our question$\left( -7+24i \right)$. Compare the general solution to $\sqrt{-7+24i}=x+iy$.
Complete step-by-step answer:
Let consider a complex number a + ib.
Let the square root of (a + ib) be x + iy
That is $\sqrt{a+ib}=x+iy\text{, where }x,y\in R$
Now square on both sides,
$\begin{align}
& {{\left( \sqrt{a+ib} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& \Rightarrow a+ib={{x}^{2}}+2iy+{{i}^{2}}{{y}^{2}} \\
\end{align}$
We know ${{i}^{2}}=-1$
$\begin{align}
& \therefore a+ib={{x}^{2}}+2iy+\left( -1 \right){{y}^{2}} \\
& a+ib={{x}^{2}}-{{y}^{2}}+2iyx...............\left( 1 \right) \\
\end{align}$
Let us take ${{x}^{2}}-{{y}^{2}}=a..............\left( 2 \right)\text{ }\because {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$
$2xy=b.......................\left( 3 \right)$
$\begin{align}
& {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( {{x}^{2}}={{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{a}^{2}}+{{b}^{2}} \\
\end{align}$
Take square root on both sides.
$\begin{align}
& \sqrt{{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}................\left( 4 \right) \\
\end{align}$
Add equation (2) and equation (4).
\[\dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}-{{y}^{2}}=a\text{ } \\
\end{align}}{2{{x}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}+a}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{matrix}
\therefore {{x}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2} \\
\therefore x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}} \\
\end{matrix}\]
Now subtract equation (2) and equation (4).
\[\begin{align}
& \dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {}^{-}{{x}^{2\left( + \right)}}-{{y}^{2}}={}^{-}a \\
\end{align}}{2{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}-a} \\
& {{y}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}\ \ \ \ \therefore y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}} \\
\end{align}\]
Now we have got the value of x and y.
$x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}\ \ and\ y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}\ .............\left( 5 \right)$
We have been asked to find the square root of (-7 +24i)
$\sqrt{\left( -7+24i \right)}=x+iy$ i.e., take square root of (-7 + 24i) equal to x + iy
Where a + ib = -7 + 24i
$\therefore $ a = -7
b = 24
Now squaring on both sides;
$\begin{align}
& {{\left( \sqrt{-7+24i} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& -7+24i={{x}^{2}}+2xyi+{{\left( iy \right)}^{2}} \\
& \therefore {{i}^{2}}=-1 \\
& \Rightarrow -7+24i={{x}^{2}}-{{y}^{2}}+2xyi..............\left( 6 \right) \\
\end{align}$
Now compare equation (1) and equation (6) which is similar.
$\begin{align}
& \therefore {{x}^{2}}-{{y}^{2}}=a\Rightarrow {{x}^{2}}-{{y}^{2}}=-7 \\
& 2xy=b\Rightarrow 2xy=24 \\
\end{align}$
Now substitute the value of a = -7 and b = 24 in equation (5).
$\begin{align}
& x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}+\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25-7}{2}}=\pm \sqrt{\dfrac{18}{2}}=\pm 3 \\
& y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}-\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25+7}{2}}=\pm \sqrt{\dfrac{32}{2}}=\pm 4 \\
& \therefore x+iy=\pm 3\pm 4 \\
\end{align}$
$\therefore $The roots are $+\left( 3+i4 \right)\ \ and\ \ -\left( 3+i4 \right)$.
Note: The proof of $\sqrt{a+ib}=x+iy$ is similar to our question$\left( -7+24i \right)$. Compare the general solution to $\sqrt{-7+24i}=x+iy$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE