
Find the square root of $\left( -7+24i \right)$ .
Answer
593.7k+ views
Hint: Take -7 + 24i = a + bi, where a = -7 and b = 24. Assume the square root of $\left( -7+24i \right)$ equal to $\left( x+iy \right)$. Take square and solve the equation obtained. Find the equation connecting x, y, a and b. Then find the roots.
Complete step-by-step answer:
Let consider a complex number a + ib.
Let the square root of (a + ib) be x + iy
That is $\sqrt{a+ib}=x+iy\text{, where }x,y\in R$
Now square on both sides,
$\begin{align}
& {{\left( \sqrt{a+ib} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& \Rightarrow a+ib={{x}^{2}}+2iy+{{i}^{2}}{{y}^{2}} \\
\end{align}$
We know ${{i}^{2}}=-1$
$\begin{align}
& \therefore a+ib={{x}^{2}}+2iy+\left( -1 \right){{y}^{2}} \\
& a+ib={{x}^{2}}-{{y}^{2}}+2iyx...............\left( 1 \right) \\
\end{align}$
Let us take ${{x}^{2}}-{{y}^{2}}=a..............\left( 2 \right)\text{ }\because {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$
$2xy=b.......................\left( 3 \right)$
$\begin{align}
& {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( {{x}^{2}}={{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{a}^{2}}+{{b}^{2}} \\
\end{align}$
Take square root on both sides.
$\begin{align}
& \sqrt{{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}................\left( 4 \right) \\
\end{align}$
Add equation (2) and equation (4).
\[\dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}-{{y}^{2}}=a\text{ } \\
\end{align}}{2{{x}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}+a}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{matrix}
\therefore {{x}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2} \\
\therefore x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}} \\
\end{matrix}\]
Now subtract equation (2) and equation (4).
\[\begin{align}
& \dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {}^{-}{{x}^{2\left( + \right)}}-{{y}^{2}}={}^{-}a \\
\end{align}}{2{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}-a} \\
& {{y}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}\ \ \ \ \therefore y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}} \\
\end{align}\]
Now we have got the value of x and y.
$x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}\ \ and\ y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}\ .............\left( 5 \right)$
We have been asked to find the square root of (-7 +24i)
$\sqrt{\left( -7+24i \right)}=x+iy$ i.e., take square root of (-7 + 24i) equal to x + iy
Where a + ib = -7 + 24i
$\therefore $ a = -7
b = 24
Now squaring on both sides;
$\begin{align}
& {{\left( \sqrt{-7+24i} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& -7+24i={{x}^{2}}+2xyi+{{\left( iy \right)}^{2}} \\
& \therefore {{i}^{2}}=-1 \\
& \Rightarrow -7+24i={{x}^{2}}-{{y}^{2}}+2xyi..............\left( 6 \right) \\
\end{align}$
Now compare equation (1) and equation (6) which is similar.
$\begin{align}
& \therefore {{x}^{2}}-{{y}^{2}}=a\Rightarrow {{x}^{2}}-{{y}^{2}}=-7 \\
& 2xy=b\Rightarrow 2xy=24 \\
\end{align}$
Now substitute the value of a = -7 and b = 24 in equation (5).
$\begin{align}
& x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}+\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25-7}{2}}=\pm \sqrt{\dfrac{18}{2}}=\pm 3 \\
& y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}-\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25+7}{2}}=\pm \sqrt{\dfrac{32}{2}}=\pm 4 \\
& \therefore x+iy=\pm 3\pm 4 \\
\end{align}$
$\therefore $The roots are $+\left( 3+i4 \right)\ \ and\ \ -\left( 3+i4 \right)$.
Note: The proof of $\sqrt{a+ib}=x+iy$ is similar to our question$\left( -7+24i \right)$. Compare the general solution to $\sqrt{-7+24i}=x+iy$.
Complete step-by-step answer:
Let consider a complex number a + ib.
Let the square root of (a + ib) be x + iy
That is $\sqrt{a+ib}=x+iy\text{, where }x,y\in R$
Now square on both sides,
$\begin{align}
& {{\left( \sqrt{a+ib} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& \Rightarrow a+ib={{x}^{2}}+2iy+{{i}^{2}}{{y}^{2}} \\
\end{align}$
We know ${{i}^{2}}=-1$
$\begin{align}
& \therefore a+ib={{x}^{2}}+2iy+\left( -1 \right){{y}^{2}} \\
& a+ib={{x}^{2}}-{{y}^{2}}+2iyx...............\left( 1 \right) \\
\end{align}$
Let us take ${{x}^{2}}-{{y}^{2}}=a..............\left( 2 \right)\text{ }\because {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$
$2xy=b.......................\left( 3 \right)$
$\begin{align}
& {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( {{x}^{2}}={{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{a}^{2}}+{{b}^{2}} \\
\end{align}$
Take square root on both sides.
$\begin{align}
& \sqrt{{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}................\left( 4 \right) \\
\end{align}$
Add equation (2) and equation (4).
\[\dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {{x}^{2}}-{{y}^{2}}=a\text{ } \\
\end{align}}{2{{x}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}+a}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{matrix}
\therefore {{x}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2} \\
\therefore x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}} \\
\end{matrix}\]
Now subtract equation (2) and equation (4).
\[\begin{align}
& \dfrac{\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& {}^{-}{{x}^{2\left( + \right)}}-{{y}^{2}}={}^{-}a \\
\end{align}}{2{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}-a} \\
& {{y}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}\ \ \ \ \therefore y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}} \\
\end{align}\]
Now we have got the value of x and y.
$x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}\ \ and\ y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}\ .............\left( 5 \right)$
We have been asked to find the square root of (-7 +24i)
$\sqrt{\left( -7+24i \right)}=x+iy$ i.e., take square root of (-7 + 24i) equal to x + iy
Where a + ib = -7 + 24i
$\therefore $ a = -7
b = 24
Now squaring on both sides;
$\begin{align}
& {{\left( \sqrt{-7+24i} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\
& -7+24i={{x}^{2}}+2xyi+{{\left( iy \right)}^{2}} \\
& \therefore {{i}^{2}}=-1 \\
& \Rightarrow -7+24i={{x}^{2}}-{{y}^{2}}+2xyi..............\left( 6 \right) \\
\end{align}$
Now compare equation (1) and equation (6) which is similar.
$\begin{align}
& \therefore {{x}^{2}}-{{y}^{2}}=a\Rightarrow {{x}^{2}}-{{y}^{2}}=-7 \\
& 2xy=b\Rightarrow 2xy=24 \\
\end{align}$
Now substitute the value of a = -7 and b = 24 in equation (5).
$\begin{align}
& x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}+\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25-7}{2}}=\pm \sqrt{\dfrac{18}{2}}=\pm 3 \\
& y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}-\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25+7}{2}}=\pm \sqrt{\dfrac{32}{2}}=\pm 4 \\
& \therefore x+iy=\pm 3\pm 4 \\
\end{align}$
$\therefore $The roots are $+\left( 3+i4 \right)\ \ and\ \ -\left( 3+i4 \right)$.
Note: The proof of $\sqrt{a+ib}=x+iy$ is similar to our question$\left( -7+24i \right)$. Compare the general solution to $\sqrt{-7+24i}=x+iy$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

