
Find the solution of the equation given below
$\operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0}$
Answer
603.3k+ views
Hint: By using the given trigonometric formula which is given below. The terms can be brought in the form of some series after manipulation.
$
= \operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) \\
= \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}} \\
$
Given that:
$
= \operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0} \\
= \operatorname{Sin} {10^0} + \operatorname{Sin} ({10^0} + {10^0}) + \operatorname{Sin} ({10^0} + 2 \times {10^0}) + ........... + \operatorname{Sin} ({10^0} + 35 \times {10^0}) \\
$ …………………………..(1)
As we know that$\left[ {\operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) = \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}}} \right]$
By comparing equation (1) with the above formula, we get
\[
a = {10^0},d = {10^0} \\
n - 1 = 35 \\
n = 36 \\
\]
Using the values of a, d, n and substituting these values in the above formula, we get
$
\Rightarrow \dfrac{{\operatorname{Sin} (10 + (36 - 1)\dfrac{{10}}{2})\operatorname{Sin} (\dfrac{{36 \times 10}}{2})}}{{\operatorname{Sin} (\dfrac{{10}}{2})}} \\
\Rightarrow \dfrac{{\operatorname{Sin} (10 + 35 \times 5)\operatorname{Sin} (36 \times 5)}}{{\operatorname{Sin} 5}} \\
$
After simplifying further
$ \Rightarrow \dfrac{{\operatorname{Sin} ({{10}^0} + {{175}^0})\operatorname{Sin} ({{180}^0})}}{{\operatorname{Sin} {5^0}}}$
Since, the value of $\operatorname{Sin} {180^0} = 0$
$
\Rightarrow \dfrac{{\operatorname{Sin} ({{185}^0}) \times 0}}{{\operatorname{Sin} {5^0}}} \\
\Rightarrow 0 \\
$
Hence, after simplifying the given trigonometric equation the final result is 0.
Note: For these types of problems, remember all important trigonometric identities and the values of trigonometric functions. Also be aware of the concept of quadrants, range and domain of these functions. Solving these types of problems will become simple if you remember all trigonometric expressions.
$
= \operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) \\
= \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}} \\
$
Given that:
$
= \operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0} \\
= \operatorname{Sin} {10^0} + \operatorname{Sin} ({10^0} + {10^0}) + \operatorname{Sin} ({10^0} + 2 \times {10^0}) + ........... + \operatorname{Sin} ({10^0} + 35 \times {10^0}) \\
$ …………………………..(1)
As we know that$\left[ {\operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) = \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}}} \right]$
By comparing equation (1) with the above formula, we get
\[
a = {10^0},d = {10^0} \\
n - 1 = 35 \\
n = 36 \\
\]
Using the values of a, d, n and substituting these values in the above formula, we get
$
\Rightarrow \dfrac{{\operatorname{Sin} (10 + (36 - 1)\dfrac{{10}}{2})\operatorname{Sin} (\dfrac{{36 \times 10}}{2})}}{{\operatorname{Sin} (\dfrac{{10}}{2})}} \\
\Rightarrow \dfrac{{\operatorname{Sin} (10 + 35 \times 5)\operatorname{Sin} (36 \times 5)}}{{\operatorname{Sin} 5}} \\
$
After simplifying further
$ \Rightarrow \dfrac{{\operatorname{Sin} ({{10}^0} + {{175}^0})\operatorname{Sin} ({{180}^0})}}{{\operatorname{Sin} {5^0}}}$
Since, the value of $\operatorname{Sin} {180^0} = 0$
$
\Rightarrow \dfrac{{\operatorname{Sin} ({{185}^0}) \times 0}}{{\operatorname{Sin} {5^0}}} \\
\Rightarrow 0 \\
$
Hence, after simplifying the given trigonometric equation the final result is 0.
Note: For these types of problems, remember all important trigonometric identities and the values of trigonometric functions. Also be aware of the concept of quadrants, range and domain of these functions. Solving these types of problems will become simple if you remember all trigonometric expressions.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

