Answer
Verified
493.5k+ views
Hint: By using the given trigonometric formula which is given below. The terms can be brought in the form of some series after manipulation.
$
= \operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) \\
= \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}} \\
$
Given that:
$
= \operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0} \\
= \operatorname{Sin} {10^0} + \operatorname{Sin} ({10^0} + {10^0}) + \operatorname{Sin} ({10^0} + 2 \times {10^0}) + ........... + \operatorname{Sin} ({10^0} + 35 \times {10^0}) \\
$ …………………………..(1)
As we know that$\left[ {\operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) = \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}}} \right]$
By comparing equation (1) with the above formula, we get
\[
a = {10^0},d = {10^0} \\
n - 1 = 35 \\
n = 36 \\
\]
Using the values of a, d, n and substituting these values in the above formula, we get
$
\Rightarrow \dfrac{{\operatorname{Sin} (10 + (36 - 1)\dfrac{{10}}{2})\operatorname{Sin} (\dfrac{{36 \times 10}}{2})}}{{\operatorname{Sin} (\dfrac{{10}}{2})}} \\
\Rightarrow \dfrac{{\operatorname{Sin} (10 + 35 \times 5)\operatorname{Sin} (36 \times 5)}}{{\operatorname{Sin} 5}} \\
$
After simplifying further
$ \Rightarrow \dfrac{{\operatorname{Sin} ({{10}^0} + {{175}^0})\operatorname{Sin} ({{180}^0})}}{{\operatorname{Sin} {5^0}}}$
Since, the value of $\operatorname{Sin} {180^0} = 0$
$
\Rightarrow \dfrac{{\operatorname{Sin} ({{185}^0}) \times 0}}{{\operatorname{Sin} {5^0}}} \\
\Rightarrow 0 \\
$
Hence, after simplifying the given trigonometric equation the final result is 0.
Note: For these types of problems, remember all important trigonometric identities and the values of trigonometric functions. Also be aware of the concept of quadrants, range and domain of these functions. Solving these types of problems will become simple if you remember all trigonometric expressions.
$
= \operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) \\
= \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}} \\
$
Given that:
$
= \operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0} \\
= \operatorname{Sin} {10^0} + \operatorname{Sin} ({10^0} + {10^0}) + \operatorname{Sin} ({10^0} + 2 \times {10^0}) + ........... + \operatorname{Sin} ({10^0} + 35 \times {10^0}) \\
$ …………………………..(1)
As we know that$\left[ {\operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) = \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}}} \right]$
By comparing equation (1) with the above formula, we get
\[
a = {10^0},d = {10^0} \\
n - 1 = 35 \\
n = 36 \\
\]
Using the values of a, d, n and substituting these values in the above formula, we get
$
\Rightarrow \dfrac{{\operatorname{Sin} (10 + (36 - 1)\dfrac{{10}}{2})\operatorname{Sin} (\dfrac{{36 \times 10}}{2})}}{{\operatorname{Sin} (\dfrac{{10}}{2})}} \\
\Rightarrow \dfrac{{\operatorname{Sin} (10 + 35 \times 5)\operatorname{Sin} (36 \times 5)}}{{\operatorname{Sin} 5}} \\
$
After simplifying further
$ \Rightarrow \dfrac{{\operatorname{Sin} ({{10}^0} + {{175}^0})\operatorname{Sin} ({{180}^0})}}{{\operatorname{Sin} {5^0}}}$
Since, the value of $\operatorname{Sin} {180^0} = 0$
$
\Rightarrow \dfrac{{\operatorname{Sin} ({{185}^0}) \times 0}}{{\operatorname{Sin} {5^0}}} \\
\Rightarrow 0 \\
$
Hence, after simplifying the given trigonometric equation the final result is 0.
Note: For these types of problems, remember all important trigonometric identities and the values of trigonometric functions. Also be aware of the concept of quadrants, range and domain of these functions. Solving these types of problems will become simple if you remember all trigonometric expressions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE