
Find the solution of the equation given below
$\operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0}$
Answer
621.9k+ views
Hint: By using the given trigonometric formula which is given below. The terms can be brought in the form of some series after manipulation.
$
= \operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) \\
= \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}} \\
$
Given that:
$
= \operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0} \\
= \operatorname{Sin} {10^0} + \operatorname{Sin} ({10^0} + {10^0}) + \operatorname{Sin} ({10^0} + 2 \times {10^0}) + ........... + \operatorname{Sin} ({10^0} + 35 \times {10^0}) \\
$ …………………………..(1)
As we know that$\left[ {\operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) = \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}}} \right]$
By comparing equation (1) with the above formula, we get
\[
a = {10^0},d = {10^0} \\
n - 1 = 35 \\
n = 36 \\
\]
Using the values of a, d, n and substituting these values in the above formula, we get
$
\Rightarrow \dfrac{{\operatorname{Sin} (10 + (36 - 1)\dfrac{{10}}{2})\operatorname{Sin} (\dfrac{{36 \times 10}}{2})}}{{\operatorname{Sin} (\dfrac{{10}}{2})}} \\
\Rightarrow \dfrac{{\operatorname{Sin} (10 + 35 \times 5)\operatorname{Sin} (36 \times 5)}}{{\operatorname{Sin} 5}} \\
$
After simplifying further
$ \Rightarrow \dfrac{{\operatorname{Sin} ({{10}^0} + {{175}^0})\operatorname{Sin} ({{180}^0})}}{{\operatorname{Sin} {5^0}}}$
Since, the value of $\operatorname{Sin} {180^0} = 0$
$
\Rightarrow \dfrac{{\operatorname{Sin} ({{185}^0}) \times 0}}{{\operatorname{Sin} {5^0}}} \\
\Rightarrow 0 \\
$
Hence, after simplifying the given trigonometric equation the final result is 0.
Note: For these types of problems, remember all important trigonometric identities and the values of trigonometric functions. Also be aware of the concept of quadrants, range and domain of these functions. Solving these types of problems will become simple if you remember all trigonometric expressions.
$
= \operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) \\
= \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}} \\
$
Given that:
$
= \operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0} \\
= \operatorname{Sin} {10^0} + \operatorname{Sin} ({10^0} + {10^0}) + \operatorname{Sin} ({10^0} + 2 \times {10^0}) + ........... + \operatorname{Sin} ({10^0} + 35 \times {10^0}) \\
$ …………………………..(1)
As we know that$\left[ {\operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) = \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}}} \right]$
By comparing equation (1) with the above formula, we get
\[
a = {10^0},d = {10^0} \\
n - 1 = 35 \\
n = 36 \\
\]
Using the values of a, d, n and substituting these values in the above formula, we get
$
\Rightarrow \dfrac{{\operatorname{Sin} (10 + (36 - 1)\dfrac{{10}}{2})\operatorname{Sin} (\dfrac{{36 \times 10}}{2})}}{{\operatorname{Sin} (\dfrac{{10}}{2})}} \\
\Rightarrow \dfrac{{\operatorname{Sin} (10 + 35 \times 5)\operatorname{Sin} (36 \times 5)}}{{\operatorname{Sin} 5}} \\
$
After simplifying further
$ \Rightarrow \dfrac{{\operatorname{Sin} ({{10}^0} + {{175}^0})\operatorname{Sin} ({{180}^0})}}{{\operatorname{Sin} {5^0}}}$
Since, the value of $\operatorname{Sin} {180^0} = 0$
$
\Rightarrow \dfrac{{\operatorname{Sin} ({{185}^0}) \times 0}}{{\operatorname{Sin} {5^0}}} \\
\Rightarrow 0 \\
$
Hence, after simplifying the given trigonometric equation the final result is 0.
Note: For these types of problems, remember all important trigonometric identities and the values of trigonometric functions. Also be aware of the concept of quadrants, range and domain of these functions. Solving these types of problems will become simple if you remember all trigonometric expressions.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

