
Find the solution of the equation given below
$\operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0}$
Answer
594.3k+ views
Hint: By using the given trigonometric formula which is given below. The terms can be brought in the form of some series after manipulation.
$
= \operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) \\
= \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}} \\
$
Given that:
$
= \operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0} \\
= \operatorname{Sin} {10^0} + \operatorname{Sin} ({10^0} + {10^0}) + \operatorname{Sin} ({10^0} + 2 \times {10^0}) + ........... + \operatorname{Sin} ({10^0} + 35 \times {10^0}) \\
$ …………………………..(1)
As we know that$\left[ {\operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) = \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}}} \right]$
By comparing equation (1) with the above formula, we get
\[
a = {10^0},d = {10^0} \\
n - 1 = 35 \\
n = 36 \\
\]
Using the values of a, d, n and substituting these values in the above formula, we get
$
\Rightarrow \dfrac{{\operatorname{Sin} (10 + (36 - 1)\dfrac{{10}}{2})\operatorname{Sin} (\dfrac{{36 \times 10}}{2})}}{{\operatorname{Sin} (\dfrac{{10}}{2})}} \\
\Rightarrow \dfrac{{\operatorname{Sin} (10 + 35 \times 5)\operatorname{Sin} (36 \times 5)}}{{\operatorname{Sin} 5}} \\
$
After simplifying further
$ \Rightarrow \dfrac{{\operatorname{Sin} ({{10}^0} + {{175}^0})\operatorname{Sin} ({{180}^0})}}{{\operatorname{Sin} {5^0}}}$
Since, the value of $\operatorname{Sin} {180^0} = 0$
$
\Rightarrow \dfrac{{\operatorname{Sin} ({{185}^0}) \times 0}}{{\operatorname{Sin} {5^0}}} \\
\Rightarrow 0 \\
$
Hence, after simplifying the given trigonometric equation the final result is 0.
Note: For these types of problems, remember all important trigonometric identities and the values of trigonometric functions. Also be aware of the concept of quadrants, range and domain of these functions. Solving these types of problems will become simple if you remember all trigonometric expressions.
$
= \operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) \\
= \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}} \\
$
Given that:
$
= \operatorname{Sin} {10^0} + \operatorname{Sin} {20^0} + \operatorname{Sin} {30^0} + ............ + \operatorname{Sin} {360^0} \\
= \operatorname{Sin} {10^0} + \operatorname{Sin} ({10^0} + {10^0}) + \operatorname{Sin} ({10^0} + 2 \times {10^0}) + ........... + \operatorname{Sin} ({10^0} + 35 \times {10^0}) \\
$ …………………………..(1)
As we know that$\left[ {\operatorname{Sin} a + \operatorname{Sin} (a + d) + \operatorname{Sin} (a + 2d) + ......... + \operatorname{Sin} (a + (n - 1)d) = \dfrac{{(\operatorname{Sin} (a + (n - 1)\dfrac{d}{2})\operatorname{Sin} (\dfrac{{nd}}{2})}}{{\operatorname{Sin} \left( {\dfrac{d}{2}} \right)}}} \right]$
By comparing equation (1) with the above formula, we get
\[
a = {10^0},d = {10^0} \\
n - 1 = 35 \\
n = 36 \\
\]
Using the values of a, d, n and substituting these values in the above formula, we get
$
\Rightarrow \dfrac{{\operatorname{Sin} (10 + (36 - 1)\dfrac{{10}}{2})\operatorname{Sin} (\dfrac{{36 \times 10}}{2})}}{{\operatorname{Sin} (\dfrac{{10}}{2})}} \\
\Rightarrow \dfrac{{\operatorname{Sin} (10 + 35 \times 5)\operatorname{Sin} (36 \times 5)}}{{\operatorname{Sin} 5}} \\
$
After simplifying further
$ \Rightarrow \dfrac{{\operatorname{Sin} ({{10}^0} + {{175}^0})\operatorname{Sin} ({{180}^0})}}{{\operatorname{Sin} {5^0}}}$
Since, the value of $\operatorname{Sin} {180^0} = 0$
$
\Rightarrow \dfrac{{\operatorname{Sin} ({{185}^0}) \times 0}}{{\operatorname{Sin} {5^0}}} \\
\Rightarrow 0 \\
$
Hence, after simplifying the given trigonometric equation the final result is 0.
Note: For these types of problems, remember all important trigonometric identities and the values of trigonometric functions. Also be aware of the concept of quadrants, range and domain of these functions. Solving these types of problems will become simple if you remember all trigonometric expressions.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

