Answer
Verified
428.7k+ views
Hint: We start solving the problem by drawing the figure representing the given information and then assigning the variable for the slope of the given line. We then recall the definition of slope of the line passing through the points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ as $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$. We then use this definition for the given points $\left( 3,-5 \right)$ and $\left( 1,2 \right)$. We then make the necessary calculations to get the required value of slope of the line.
Complete step by step answer:
According to the problem, we need to find the slope of the line passing through the following points: $\left( 3,-5 \right)$ and $\left( 1,2 \right)$.
Let us draw the figure representing the given information.
Let us recall the formula to find the slope passing through the points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$.
We know that the slope of the line passing through the points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Let us assume the slope of the line passing through the points $\left( 3,-5 \right)$ and $\left( 1,2 \right)$ be ‘m’.
So, we have $m=\dfrac{2-\left( -5 \right)}{1-3}$.
$\Rightarrow m=\dfrac{2+5}{-2}$.
$\Rightarrow m=\dfrac{7}{-2}$.
$\Rightarrow m=\dfrac{-7}{2}$.
So, we have found the slope of the line passing through the points $\left( 3,-5 \right)$ and $\left( 1,2 \right)$ as $\dfrac{-7}{2}$.
∴ The slope of the line passing through the points $\left( 3,-5 \right)$ and $\left( 1,2 \right)$ is $\dfrac{-7}{2}$.
Note: We can also solve this problem by using the formula of slope as $\dfrac{{{y}_{1}}-{{y}_{2}}}{{{x}_{1}}-{{x}_{2}}}$. We can also find the equation of the line first and then compare with the standard form to find the slope of the line. We can also find the angle made by the line with the line using the fact that the slope is tangent of the angle made by the line with x-axis. Similarly, we can expect problems to find the slope of the perpendicular to the given line.
Complete step by step answer:
According to the problem, we need to find the slope of the line passing through the following points: $\left( 3,-5 \right)$ and $\left( 1,2 \right)$.
Let us draw the figure representing the given information.
Let us recall the formula to find the slope passing through the points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$.
We know that the slope of the line passing through the points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$.
Let us assume the slope of the line passing through the points $\left( 3,-5 \right)$ and $\left( 1,2 \right)$ be ‘m’.
So, we have $m=\dfrac{2-\left( -5 \right)}{1-3}$.
$\Rightarrow m=\dfrac{2+5}{-2}$.
$\Rightarrow m=\dfrac{7}{-2}$.
$\Rightarrow m=\dfrac{-7}{2}$.
So, we have found the slope of the line passing through the points $\left( 3,-5 \right)$ and $\left( 1,2 \right)$ as $\dfrac{-7}{2}$.
∴ The slope of the line passing through the points $\left( 3,-5 \right)$ and $\left( 1,2 \right)$ is $\dfrac{-7}{2}$.
Note: We can also solve this problem by using the formula of slope as $\dfrac{{{y}_{1}}-{{y}_{2}}}{{{x}_{1}}-{{x}_{2}}}$. We can also find the equation of the line first and then compare with the standard form to find the slope of the line. We can also find the angle made by the line with the line using the fact that the slope is tangent of the angle made by the line with x-axis. Similarly, we can expect problems to find the slope of the perpendicular to the given line.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE