Answer
Verified
426.3k+ views
Hint: We first try to find the characteristics of the line $5x-2=0$. We find the relation of the slope of the line with the angle it makes with the positive X-axis. We also find the point at which it intersects the Y-axis.
Complete step-by-step solution:
We need to find the slope and y-intercept of the function $5x-2=0$.
The given line $5x-2=0$ can be converted to $x=\dfrac{2}{5}$.
We know that any equation of the form $x=c$ where $c$ is a constant will be a vertical line parallel to the Y-axis. The slope of these equations is always undefined.
Slope is usually defined by the ratio tan of the angle made by a line with the positive X-axis.
In case of vertical lines, they make ${{90}^{\circ }}$ with the X-axis.
We also know $\tan 90$ is undefined. Therefore, the slope of $5x-2=0$ is undefined.
Now we find the y-intercept of $5x-2=0$.
As we know that the line is parallel to the Y-axis and we know that parallel lines don’t touch or intersect each other ever. Therefore, there is no y-intercept of the function $5x-2=0$.
Note: We can also take the equation as a function of $x$ where $f\left( x \right)=5x-2$. We know that the slope of any function is the differentiated form of the function equal to $\dfrac{dy}{dx}$. In the function of as function $y$ is not mentioned and we have that $5x-2=0$, we can convert the equation to $x=\dfrac{2}{5}$ which gives $dx=0$. Division by zero is undefined. Therefore, the slope for $5x-2=0$ is undefined.
Complete step-by-step solution:
We need to find the slope and y-intercept of the function $5x-2=0$.
The given line $5x-2=0$ can be converted to $x=\dfrac{2}{5}$.
We know that any equation of the form $x=c$ where $c$ is a constant will be a vertical line parallel to the Y-axis. The slope of these equations is always undefined.
Slope is usually defined by the ratio tan of the angle made by a line with the positive X-axis.
In case of vertical lines, they make ${{90}^{\circ }}$ with the X-axis.
We also know $\tan 90$ is undefined. Therefore, the slope of $5x-2=0$ is undefined.
Now we find the y-intercept of $5x-2=0$.
As we know that the line is parallel to the Y-axis and we know that parallel lines don’t touch or intersect each other ever. Therefore, there is no y-intercept of the function $5x-2=0$.
Note: We can also take the equation as a function of $x$ where $f\left( x \right)=5x-2$. We know that the slope of any function is the differentiated form of the function equal to $\dfrac{dy}{dx}$. In the function of as function $y$ is not mentioned and we have that $5x-2=0$, we can convert the equation to $x=\dfrac{2}{5}$ which gives $dx=0$. Division by zero is undefined. Therefore, the slope for $5x-2=0$ is undefined.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it