Find the slope and intercept of $3x - 2y = 9$?
Answer
Verified
437.1k+ views
Hint:We know the equation of a line passing through a point and having a slope ‘m’ and with ‘y’ intercept as ‘c’ is given by $y = mx + c$. Here, (x, y) is a variable. We convert the given equation to the slope intercept form. Then comparing the simplified equation with the equation of slope intercept we will get the desired result.
Complete step by step solution:
In the given problem, we are required to find the slope and intercept of the line whose equation is given to us as $3x - 2y = 9$.
The slope intercept form of the equation of a line is $y = mx + c$ where slope of line is given by ‘m’ and y-intercept is given by ‘c’.
So, $3x - 2y = 9$
Shifting term consisting y to right side of the equation,
$ \Rightarrow 3x = 9 + 2y$
$ \Rightarrow 2y = 3x - 9$
Isolating y so as to convert the equation of line to slope and intercept form, we get,
$ \Rightarrow y = \left( {\dfrac{{3x - 9}}{2}} \right)$
Now, we can directly start comparing the equation of the given line with the slope and intercept form of a line and get the values of slope and intercept of the line.
Therefore, On comparing the equation of the line given to us and the slope intercept form of the line, we get,
Slope of the line$ = m = \dfrac{3}{2}$ and y-intercept$ = c = \dfrac{{ - 9}}{2}$.
Note: ‘y’ intercept is defined as a line or a curve crosses the y-axis of a graph. In other words the value of ‘y’ at ‘x’ is equal to zero. Hence, the y intercept of a line can also be found by putting the value of x as zero.
Complete step by step solution:
In the given problem, we are required to find the slope and intercept of the line whose equation is given to us as $3x - 2y = 9$.
The slope intercept form of the equation of a line is $y = mx + c$ where slope of line is given by ‘m’ and y-intercept is given by ‘c’.
So, $3x - 2y = 9$
Shifting term consisting y to right side of the equation,
$ \Rightarrow 3x = 9 + 2y$
$ \Rightarrow 2y = 3x - 9$
Isolating y so as to convert the equation of line to slope and intercept form, we get,
$ \Rightarrow y = \left( {\dfrac{{3x - 9}}{2}} \right)$
Now, we can directly start comparing the equation of the given line with the slope and intercept form of a line and get the values of slope and intercept of the line.
Therefore, On comparing the equation of the line given to us and the slope intercept form of the line, we get,
Slope of the line$ = m = \dfrac{3}{2}$ and y-intercept$ = c = \dfrac{{ - 9}}{2}$.
Note: ‘y’ intercept is defined as a line or a curve crosses the y-axis of a graph. In other words the value of ‘y’ at ‘x’ is equal to zero. Hence, the y intercept of a line can also be found by putting the value of x as zero.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE