Answer
Verified
416.4k+ views
Hint: The equation of the line is typically written as \[y = mx + b\] where “m” is the slope and “b” is the y-intercept that is the value where the line cuts the y-axis. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions, provided they do not contain any of the variables.
Complete step-by-step answer:
We begin by writing in the form of \[y = mx + b\] from the equation given \[3x + y = - 4\] ,
The advantage to having the equation in this form is that “m” and “b” may be extracted easily.
Hence expressing \[3x + y = - 4\] in this form first we need to subtract \[3x\] from both the sides we have,
\[
3x + y - 3x = - 3x - 4 \\
\Rightarrow y = - 3x - 4 \;
\]
Now, \[y = - 3x - 4\] is in slope intercept form.
Hence now we can compare with the equation of the line that is Tthe equation of the line is typically written as \[y = mx + b\] where “m” is the slope and “b” is the y-intercept that is the value where the line cuts the y-axis we have,
Slope as \[ - 3\] and intercept as \[ - 4\] .
So, the correct answer is “Slope as \[ - 3\] and intercept as \[ - 4\] ”.
Note: If we are given the slope and one point then these values can be substituted into a formula which is based on the definition for slope that is \[y - {y_1} = m\left( {x - {x_1}} \right)\] . The values of “m” and “b” should be obtained by comparing with the line equation only. The slope of the line is the value of “m” and the “y” intercept is the value of “b”. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions.
Complete step-by-step answer:
We begin by writing in the form of \[y = mx + b\] from the equation given \[3x + y = - 4\] ,
The advantage to having the equation in this form is that “m” and “b” may be extracted easily.
Hence expressing \[3x + y = - 4\] in this form first we need to subtract \[3x\] from both the sides we have,
\[
3x + y - 3x = - 3x - 4 \\
\Rightarrow y = - 3x - 4 \;
\]
Now, \[y = - 3x - 4\] is in slope intercept form.
Hence now we can compare with the equation of the line that is Tthe equation of the line is typically written as \[y = mx + b\] where “m” is the slope and “b” is the y-intercept that is the value where the line cuts the y-axis we have,
Slope as \[ - 3\] and intercept as \[ - 4\] .
So, the correct answer is “Slope as \[ - 3\] and intercept as \[ - 4\] ”.
Note: If we are given the slope and one point then these values can be substituted into a formula which is based on the definition for slope that is \[y - {y_1} = m\left( {x - {x_1}} \right)\] . The values of “m” and “b” should be obtained by comparing with the line equation only. The slope of the line is the value of “m” and the “y” intercept is the value of “b”. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers