
Find the singular solution of the differential equation $ y = px + p - {p^2} $ where, $ p = \dfrac{{dy}}{{dx}} $.
Answer
593.1k+ views
Hint: In this question, the singular solution is to be determined for the differential equation $ y = px + p - {p^2} $ for which we need to define an expression that shows the relation between $ x $ and $ y $ only with no other parameters included. To get the relation, we will use the general properties of differentiation along with algebraic identities.
Complete step by step solution:
Differentiate the equation $ y = px + p - {p^2} $ with respect to $ x $ such that $ p = \dfrac{{dy}}{{dx}} $:
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {px + p - {p^2}} \right) \\
p = p + x\dfrac{{dp}}{{dx}} + \dfrac{{dp}}{{dx}} - 2p\dfrac{{dp}}{{dx}} \\
\dfrac{{dp}}{{dx}}\left( {x + 1 - 2p} \right) = 0 \\
\dfrac{{dp}}{{dx}} = 0;\left( {x + 1 - 2p} \right) = 0 \\
\dfrac{{dp}}{{dx}} = 0;p = \dfrac{{x + 1}}{2} \\
\]
Now, substitute $ p = \dfrac{{x + 1}}{2} $ in the equation $ y = px + p - {p^2} $ to determine the singular solution as:
$
y = px + p - {p^2} \\
= \dfrac{{x(x + 1)}}{2} + \dfrac{{(x + 1)}}{2} - {\left( {\dfrac{{(x + 1)}}{2}} \right)^2} \\
= \dfrac{{x(x + 1)}}{2} + \dfrac{{(x + 1)}}{2} - \dfrac{{{x^2} + 2x + 1}}{4} \\
= \dfrac{{2{x^2} + 2x + 2x + 2 - ({x^2} + 2x + 1)}}{4} \\
= \dfrac{{{x^2} + 2x + 1}}{4} \\
= {\left( {\dfrac{{x + 1}}{2}} \right)^2} \\
$
Hence, the singular solution of the differential equation $ y = px + p - {p^2} $ where $ p = \dfrac{{dy}}{{dx}} $ is $ y = {\left( {\dfrac{{x + 1}}{2}} \right)^2} $.
Note: This type of question can also be solved by determining an auxiliary equation with a parameter and determining the value of that parameter and at last substituting back the real parameters of the given differential equation. However, this method is quite long and includes more parameters than actual.
Complete step by step solution:
Differentiate the equation $ y = px + p - {p^2} $ with respect to $ x $ such that $ p = \dfrac{{dy}}{{dx}} $:
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {px + p - {p^2}} \right) \\
p = p + x\dfrac{{dp}}{{dx}} + \dfrac{{dp}}{{dx}} - 2p\dfrac{{dp}}{{dx}} \\
\dfrac{{dp}}{{dx}}\left( {x + 1 - 2p} \right) = 0 \\
\dfrac{{dp}}{{dx}} = 0;\left( {x + 1 - 2p} \right) = 0 \\
\dfrac{{dp}}{{dx}} = 0;p = \dfrac{{x + 1}}{2} \\
\]
Now, substitute $ p = \dfrac{{x + 1}}{2} $ in the equation $ y = px + p - {p^2} $ to determine the singular solution as:
$
y = px + p - {p^2} \\
= \dfrac{{x(x + 1)}}{2} + \dfrac{{(x + 1)}}{2} - {\left( {\dfrac{{(x + 1)}}{2}} \right)^2} \\
= \dfrac{{x(x + 1)}}{2} + \dfrac{{(x + 1)}}{2} - \dfrac{{{x^2} + 2x + 1}}{4} \\
= \dfrac{{2{x^2} + 2x + 2x + 2 - ({x^2} + 2x + 1)}}{4} \\
= \dfrac{{{x^2} + 2x + 1}}{4} \\
= {\left( {\dfrac{{x + 1}}{2}} \right)^2} \\
$
Hence, the singular solution of the differential equation $ y = px + p - {p^2} $ where $ p = \dfrac{{dy}}{{dx}} $ is $ y = {\left( {\dfrac{{x + 1}}{2}} \right)^2} $.
Note: This type of question can also be solved by determining an auxiliary equation with a parameter and determining the value of that parameter and at last substituting back the real parameters of the given differential equation. However, this method is quite long and includes more parameters than actual.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

