
Find the shortest distance between the lines whose vector equation are $\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \lambda \left( {\hat i - 3\hat j + 2\hat k} \right)$ and $\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu \left( {2\hat i + 3\hat j + \hat k} \right)$.
Answer
510.6k+ views
Hint: Check whether lines are parallel or not.
When lines are parallel, the direction ratios of both lines are in proportion.
Parallel lines are at the same distance throughout the line.
Neither parallel nor intersecting lines are known as skew lines.
Let a point $\left( {{x_1},{y_1},{z_1}} \right)$ , lie on the line, and have direction ratios: $\left( {a,b,c} \right)$
Cartesian equation of the line:
$\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}$
Vector equation of the line:
$x\hat i + y\hat j + z\hat k = \left( {{x_1}\hat i + {y_1}\hat j + {z_1}\hat k} \right) + \lambda \left( {a\hat i + b\hat j + c\hat k} \right)$
$\vec r = x\hat i + y\hat j + z\hat k$ , \[{\vec a_1} = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\] , \[{\vec b_1} = a\hat i + b\hat j + c\hat k\]
Therefore, the vector equation of a line:
${\vec r_1} = {\vec a_1} + \lambda {\vec b_1}$
calculate the shortest distance between the lines using the defined formula.
Complete step-by-step answer:
Step 1: Given equations of lines.
Line 1: $\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \lambda \left( {\hat i - 3\hat j + 2\hat k} \right)$ , where $\vec r = \left( {x\hat i + y\hat j + z\hat k} \right)$
On comparing with the vector equation of the line: $x\hat i + y\hat j + z\hat k = \left( {{x_1}\hat i + {y_1}\hat j + {z_1}\hat k} \right) + \lambda \left( {a\hat i + b\hat j + c\hat k} \right)$
Given a point on line 1: $\left( {{x_1},{y_1},{z_1}} \right) = \left( {1,2,3} \right)$
Direction ratios of line 1: $\left( {{a_1},{b_1},{c_1}} \right) = \left( {1, - 3,2} \right)$ …… (1)
(Subscript 1 to show the direction ratios of ‘line 1’)
Line 2: $\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu \left( {2\hat i + 3\hat j + \hat k} \right)$, where $\vec r = \left( {x\hat i + y\hat j + z\hat k} \right)$
On comparing with the vector equation of the line: $x\hat i + y\hat j + z\hat k = \left( {{x_1}\hat i + {y_1}\hat j + {z_1}\hat k} \right) + \lambda \left( {a\hat i + b\hat j + c\hat k} \right)$
Given a point on line 2: $\left( {{x_2},{y_2},{z_2}} \right) = \left( {4,5,6} \right)$
Direction ratios of line 2: $\left( {{a_2},{b_2},{c_2}} \right) = \left( {2,3,1} \right)$ …… (2)
(Subscript 2 to show the direction ratios of ‘line 2’)
Step 2: Check for parallel lines.
The ratio of direction ratios of line 1 and line 2 should be constant.
$
\Rightarrow \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{1}{2} \\
\Rightarrow \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{ - 3}}{{ - 3}} = - 1 \\
$
$\because \dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$
This implies line 1 and line 2 are not parallel lines. Therefore, the given lines are two skew lines.
Step 3: Use the formula of the shortest distance between the lines.
Distance, \[d = \dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{a_1}{c_2} - {a_2}{c_1}} \right)}^2} + {{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2}} }}\]
We have values of every variable involved in the formula for the shortest distance. Thus, substituting them from step 1.
$
d = \dfrac{{\left| {\begin{array}{*{20}{c}}
{4 - 1}&{5 - 2}&{6 - 3} \\
1&{ - 3}&2 \\
2&3&1
\end{array}} \right|}}{{\sqrt {{{\left( { - 3 - 6} \right)}^2} + {{\left( {1 - 4} \right)}^2} + {{\left( {3 + 6} \right)}^2}} }} \\
\Rightarrow \dfrac{{\left| {\begin{array}{*{20}{c}}
3&3&3 \\
1&{ - 3}&2 \\
2&3&1
\end{array}} \right|}}{{\sqrt {{{\left( { - 9} \right)}^2} + {{\left( { - 3} \right)}^2} + {{\left( 9 \right)}^2}} }} \\
$
Calculate the determinant of the matrix in the numerator.
$
\Rightarrow \dfrac{{3\left( { - 9} \right) - 3\left( { - 3} \right) + 3\left( 9 \right)}}{{\sqrt {81 + 9 + 81} }} \\
\Rightarrow \dfrac{{ - 27 + 9 + 27}}{{\sqrt {171} }} \\
\Rightarrow \dfrac{9}{{3\sqrt {19} }} \\
$
Rationalize the denominator, by multiplying $\sqrt {19} $to both numerator and denominator.
$\because d = \dfrac{{3\sqrt {19} }}{{19}}{\text{ }}units$
Final answer: The shortest distance between the given lines is $\dfrac{{3\sqrt {19} }}{{19}}{\text{ }}units$ .
Note: We know the Cartesian equation of the line: $\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}$
Hence, the cartesian equation of line 1:
$ \Rightarrow \dfrac{{x - 1}}{1} = \dfrac{{y - 2}}{{ - 3}} = \dfrac{{z - 3}}{2}$
Hence, the cartesian equation of line 2:
$ \Rightarrow \dfrac{{x - 4}}{2} = \dfrac{{y - 5}}{3} = \dfrac{{z - 6}}{1}$
We have given equations of line in vector form, hence, we could have used the vector formula of distance. But students might make mistakes while using the formula, so it is easier to convert the vector equation of a line into the cartesian equation of a line and use the Cartesian formula of distance.
Two skew lines:
$
\vec r = {{\vec a}_1} + \lambda {{\vec b}_1} \\
\vec r = {{\vec a}_2} + \mu {{\vec b}_2} \\
$
The shortest distance between two skew lines, $d = \dfrac{{\left( {{{\vec b}_1} \times {{\vec b}_2}} \right) \cdot \left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}}$
For two parallel lines:
$
\vec r = {{\vec a}_1} + \lambda \vec b \\
\vec r = {{\vec a}_2} + \mu \vec b \\
$
The distance between two parallel lines, $d = \dfrac{{\left( {\vec b} \right) \cdot \left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {\vec b} \right|}}$
When lines are parallel, the direction ratios of both lines are in proportion.
Parallel lines are at the same distance throughout the line.
Neither parallel nor intersecting lines are known as skew lines.
Let a point $\left( {{x_1},{y_1},{z_1}} \right)$ , lie on the line, and have direction ratios: $\left( {a,b,c} \right)$
Cartesian equation of the line:
$\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}$
Vector equation of the line:
$x\hat i + y\hat j + z\hat k = \left( {{x_1}\hat i + {y_1}\hat j + {z_1}\hat k} \right) + \lambda \left( {a\hat i + b\hat j + c\hat k} \right)$
$\vec r = x\hat i + y\hat j + z\hat k$ , \[{\vec a_1} = {x_1}\hat i + {y_1}\hat j + {z_1}\hat k\] , \[{\vec b_1} = a\hat i + b\hat j + c\hat k\]
Therefore, the vector equation of a line:
${\vec r_1} = {\vec a_1} + \lambda {\vec b_1}$
calculate the shortest distance between the lines using the defined formula.
Complete step-by-step answer:
Step 1: Given equations of lines.
Line 1: $\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \lambda \left( {\hat i - 3\hat j + 2\hat k} \right)$ , where $\vec r = \left( {x\hat i + y\hat j + z\hat k} \right)$
On comparing with the vector equation of the line: $x\hat i + y\hat j + z\hat k = \left( {{x_1}\hat i + {y_1}\hat j + {z_1}\hat k} \right) + \lambda \left( {a\hat i + b\hat j + c\hat k} \right)$
Given a point on line 1: $\left( {{x_1},{y_1},{z_1}} \right) = \left( {1,2,3} \right)$
Direction ratios of line 1: $\left( {{a_1},{b_1},{c_1}} \right) = \left( {1, - 3,2} \right)$ …… (1)
(Subscript 1 to show the direction ratios of ‘line 1’)
Line 2: $\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu \left( {2\hat i + 3\hat j + \hat k} \right)$, where $\vec r = \left( {x\hat i + y\hat j + z\hat k} \right)$
On comparing with the vector equation of the line: $x\hat i + y\hat j + z\hat k = \left( {{x_1}\hat i + {y_1}\hat j + {z_1}\hat k} \right) + \lambda \left( {a\hat i + b\hat j + c\hat k} \right)$
Given a point on line 2: $\left( {{x_2},{y_2},{z_2}} \right) = \left( {4,5,6} \right)$
Direction ratios of line 2: $\left( {{a_2},{b_2},{c_2}} \right) = \left( {2,3,1} \right)$ …… (2)
(Subscript 2 to show the direction ratios of ‘line 2’)
Step 2: Check for parallel lines.
The ratio of direction ratios of line 1 and line 2 should be constant.
$
\Rightarrow \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{1}{2} \\
\Rightarrow \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{ - 3}}{{ - 3}} = - 1 \\
$
$\because \dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$
This implies line 1 and line 2 are not parallel lines. Therefore, the given lines are two skew lines.
Step 3: Use the formula of the shortest distance between the lines.
Distance, \[d = \dfrac{{\left| {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right|}}{{\sqrt {{{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{a_1}{c_2} - {a_2}{c_1}} \right)}^2} + {{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2}} }}\]
We have values of every variable involved in the formula for the shortest distance. Thus, substituting them from step 1.
$
d = \dfrac{{\left| {\begin{array}{*{20}{c}}
{4 - 1}&{5 - 2}&{6 - 3} \\
1&{ - 3}&2 \\
2&3&1
\end{array}} \right|}}{{\sqrt {{{\left( { - 3 - 6} \right)}^2} + {{\left( {1 - 4} \right)}^2} + {{\left( {3 + 6} \right)}^2}} }} \\
\Rightarrow \dfrac{{\left| {\begin{array}{*{20}{c}}
3&3&3 \\
1&{ - 3}&2 \\
2&3&1
\end{array}} \right|}}{{\sqrt {{{\left( { - 9} \right)}^2} + {{\left( { - 3} \right)}^2} + {{\left( 9 \right)}^2}} }} \\
$
Calculate the determinant of the matrix in the numerator.
$
\Rightarrow \dfrac{{3\left( { - 9} \right) - 3\left( { - 3} \right) + 3\left( 9 \right)}}{{\sqrt {81 + 9 + 81} }} \\
\Rightarrow \dfrac{{ - 27 + 9 + 27}}{{\sqrt {171} }} \\
\Rightarrow \dfrac{9}{{3\sqrt {19} }} \\
$
Rationalize the denominator, by multiplying $\sqrt {19} $to both numerator and denominator.
$\because d = \dfrac{{3\sqrt {19} }}{{19}}{\text{ }}units$
Final answer: The shortest distance between the given lines is $\dfrac{{3\sqrt {19} }}{{19}}{\text{ }}units$ .
Note: We know the Cartesian equation of the line: $\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c}$
Hence, the cartesian equation of line 1:
$ \Rightarrow \dfrac{{x - 1}}{1} = \dfrac{{y - 2}}{{ - 3}} = \dfrac{{z - 3}}{2}$
Hence, the cartesian equation of line 2:
$ \Rightarrow \dfrac{{x - 4}}{2} = \dfrac{{y - 5}}{3} = \dfrac{{z - 6}}{1}$
We have given equations of line in vector form, hence, we could have used the vector formula of distance. But students might make mistakes while using the formula, so it is easier to convert the vector equation of a line into the cartesian equation of a line and use the Cartesian formula of distance.
Two skew lines:
$
\vec r = {{\vec a}_1} + \lambda {{\vec b}_1} \\
\vec r = {{\vec a}_2} + \mu {{\vec b}_2} \\
$
The shortest distance between two skew lines, $d = \dfrac{{\left( {{{\vec b}_1} \times {{\vec b}_2}} \right) \cdot \left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}}$
For two parallel lines:
$
\vec r = {{\vec a}_1} + \lambda \vec b \\
\vec r = {{\vec a}_2} + \mu \vec b \\
$
The distance between two parallel lines, $d = \dfrac{{\left( {\vec b} \right) \cdot \left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {\vec b} \right|}}$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
