
How do you find the second derivative by implicit differentiation?
Answer
499.2k+ views
Hint: In order to determine the second derivative by implicit function, we will consider an implicit function, $ {x^3} + {y^3} = 1 $ . Then, we will find the first order derivative by differentiating the implicit function with respect to $ x $ . And, again differentiate the first order derivative to determine the second order derivative of the implicit function. Thus, by evaluating it we will get the required value.
Complete step-by-step answer:
Now, we need to determine the second derivative by implicit function.
Let us consider an implicit function and determine the second derivative of that function.
$ {x^3} + {y^3} = 1 $ $ \to \left( 1 \right) $
Now, let us differentiate the equation $ \left( 1 \right) $ with respect to $ x $ , in order to determine the first derivative.
$ \dfrac{d}{{dx}}\left( {{x^3} + {y^3}} \right) = \dfrac{d}{{dx}}\left( 1 \right) $
We know that $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} $ and $ \dfrac{d}{{dx}}\left( C \right) = 0 $ where C is constant.
Therefore, we have,
$ 3{x^2} + 3{y^2}\dfrac{{dy}}{{dx}} = 0 $
Let us bring $ \dfrac{{dy}}{{dx}} $ in one side of the equation and the other terms to the other side of the equation.
$ 3{y^2}\dfrac{{dy}}{{dx}} = - 3{x^2} $
$ \dfrac{{dy}}{{dx}} = - \dfrac{{3{x^2}}}{{3{y^2}}} $
$ \dfrac{{dy}}{{dx}} = - \dfrac{{{x^2}}}{{{y^2}}} $ $ \to \left( 2 \right) $
Now, let us differentiate the equation $ \left( 2 \right) $ with respect to $ x $ , in order to determine the second derivative.
$ \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( { - \dfrac{{{x^2}}}{{{y^2}}}} \right) $
We know that $ \dfrac{{dy}}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{{y^2}\dfrac{d}{{dx}}\left( {{x^2}} \right) - {x^2}\dfrac{d}{{dx}}\left( {{y^2}} \right)}}{{{{\left( {{y^2}} \right)}^2}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{{y^2}.2x - {x^2}.2y\dfrac{{dy}}{{dx}}}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x{y^2} - 2{x^2}y\dfrac{{dy}}{{dx}}}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x\left( {{y^2} - xy\dfrac{{dy}}{{dx}}} \right)}}{{{y^4}}} $
From equation $ \left( 2 \right) $ , we know that $ \dfrac{{dy}}{{dx}} = - \dfrac{{{x^2}}}{{{y^2}}} $ .
Therefore, by substituting, we get,
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x\left( {{y^2} - xy\left( { - \dfrac{{{x^2}}}{{{y^2}}}} \right)} \right)}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x\left( {{y^2} + \dfrac{{{x^3}}}{y}} \right)}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\dfrac{{2x}}{y}\left( {{y^3} + {x^3}} \right)}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x\left( {{y^3} + {x^3}} \right)}}{{{y^5}}} $
Now, from the equation $ \left( 1 \right) $ , we know that $ {x^3} + {y^3} = 1 $ .
Therefore, by substituting, we get,
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x}}{{{y^5}}} $
Therefore, the second derivative of the implicit function $ {x^3} + {y^3} = 1 $ is $ - \dfrac{{2x}}{{{y^5}}} $
Note: Functions in which the dependent variable and independent variable are not separated on opposite sides of the equality are known as implicit function. To differentiate an implicit function, differentiate the equation with respect to $ x $ . Collect all the $ \dfrac{{dy}}{{dx}} $ on one side and solve for $ \dfrac{{dy}}{{dx}} $ .
Differentiating helps us to determine the rates of change. There are a number of simple rules which can be used to allow us to differentiate many functions easily.
Complete step-by-step answer:
Now, we need to determine the second derivative by implicit function.
Let us consider an implicit function and determine the second derivative of that function.
$ {x^3} + {y^3} = 1 $ $ \to \left( 1 \right) $
Now, let us differentiate the equation $ \left( 1 \right) $ with respect to $ x $ , in order to determine the first derivative.
$ \dfrac{d}{{dx}}\left( {{x^3} + {y^3}} \right) = \dfrac{d}{{dx}}\left( 1 \right) $
We know that $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} $ and $ \dfrac{d}{{dx}}\left( C \right) = 0 $ where C is constant.
Therefore, we have,
$ 3{x^2} + 3{y^2}\dfrac{{dy}}{{dx}} = 0 $
Let us bring $ \dfrac{{dy}}{{dx}} $ in one side of the equation and the other terms to the other side of the equation.
$ 3{y^2}\dfrac{{dy}}{{dx}} = - 3{x^2} $
$ \dfrac{{dy}}{{dx}} = - \dfrac{{3{x^2}}}{{3{y^2}}} $
$ \dfrac{{dy}}{{dx}} = - \dfrac{{{x^2}}}{{{y^2}}} $ $ \to \left( 2 \right) $
Now, let us differentiate the equation $ \left( 2 \right) $ with respect to $ x $ , in order to determine the second derivative.
$ \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( { - \dfrac{{{x^2}}}{{{y^2}}}} \right) $
We know that $ \dfrac{{dy}}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{{y^2}\dfrac{d}{{dx}}\left( {{x^2}} \right) - {x^2}\dfrac{d}{{dx}}\left( {{y^2}} \right)}}{{{{\left( {{y^2}} \right)}^2}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{{y^2}.2x - {x^2}.2y\dfrac{{dy}}{{dx}}}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x{y^2} - 2{x^2}y\dfrac{{dy}}{{dx}}}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x\left( {{y^2} - xy\dfrac{{dy}}{{dx}}} \right)}}{{{y^4}}} $
From equation $ \left( 2 \right) $ , we know that $ \dfrac{{dy}}{{dx}} = - \dfrac{{{x^2}}}{{{y^2}}} $ .
Therefore, by substituting, we get,
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x\left( {{y^2} - xy\left( { - \dfrac{{{x^2}}}{{{y^2}}}} \right)} \right)}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x\left( {{y^2} + \dfrac{{{x^3}}}{y}} \right)}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{\dfrac{{2x}}{y}\left( {{y^3} + {x^3}} \right)}}{{{y^4}}} $
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x\left( {{y^3} + {x^3}} \right)}}{{{y^5}}} $
Now, from the equation $ \left( 1 \right) $ , we know that $ {x^3} + {y^3} = 1 $ .
Therefore, by substituting, we get,
$ \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2x}}{{{y^5}}} $
Therefore, the second derivative of the implicit function $ {x^3} + {y^3} = 1 $ is $ - \dfrac{{2x}}{{{y^5}}} $
Note: Functions in which the dependent variable and independent variable are not separated on opposite sides of the equality are known as implicit function. To differentiate an implicit function, differentiate the equation with respect to $ x $ . Collect all the $ \dfrac{{dy}}{{dx}} $ on one side and solve for $ \dfrac{{dy}}{{dx}} $ .
Differentiating helps us to determine the rates of change. There are a number of simple rules which can be used to allow us to differentiate many functions easily.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
