Answer
Verified
426.9k+ views
Hint:Scalar projection of $b$ onto $a$ is given as $\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{\left| a \right|}}$ and vector projection of $b$ onto $a$ is given as $\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{{{\left( {\left| a \right|} \right)}^2}}}\overrightarrow a $
Where $\overrightarrow a .\;\overrightarrow b $ represents the dot product between $a\;{\text{and}}\;b$, $\left| a \right|$ represents the magnitude of the vector $a$.
Use the above information to find the respective scalar and vector projections.
Complete step by step answer:
In order to find the scalar projection of $b$ onto $a$ we have to first find the dot product of $a\;{\text{and}}\;b$. Dot product of two vectors $x = < a,\;b,\;c > \;{\text{and}}\;y = < e,\;f,\;g > $ is given as follows
$\overrightarrow x .\overrightarrow y = < a,\;b,\;c > . < e,\;f,\;g > = (a \times e + b \times f + c \times g)$
From the above formula of dot product performing the dot product of $a\;{\text{and}}\;b$, we will get,
$\overrightarrow a .\;\overrightarrow b = < 3,\; - 6,\;2 > . < 1,\;1,\;1 > = \left( {3 \times 1 + ( - 6) \times 1 + 2 \times 1} \right) = 3 - 6 + 2 = - 1 \\
\Rightarrow \overrightarrow a .\;\overrightarrow b = - 1 \\ $
Now we have to find the magnitude of $a$ in order to find the scalar projection of $b$ onto $a$. Magnitude of a vector $x = < a,\;b,\;c > $ is given as
$\left| x \right| = \left| {\sqrt {{a^2} + {b^2} + {c^2}} } \right|$
Using this to find the magnitude of $a = < 3,\; - 6,\;2 > $, we will get
$\left| a \right| = \left| {\sqrt {{3^2} + {{( - 6)}^2} + {2^2}} } \right| = \left| {\sqrt {9 + 36 + 4} } \right| = \left| {\sqrt {49} } \right| = \left| { \pm 7} \right| = 7$
Scalar projection of a vector $x = < a,\;b,\;c > $ on to the vector $y = < e,\;f,\;g > $ is given as $\dfrac{{\overrightarrow y .\;\overrightarrow x }}{{\left| y \right|}}$
With the use of this formula the scalar projection of $b$ onto $a$ will be given as $\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{\left| a \right|}}$
Putting the values we will get
$\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{\left| a \right|}} = \dfrac{{ - 1}}{7}$
Now we will find the vector projection of $b$ onto $a$
Vector projection of a vector $x = < a,\;b,\;c > $ on to the vector $y = < e,\;f,\;g > $ is given as $\dfrac{{\overrightarrow y .\;\overrightarrow x }}{{{{\left( {\left| y \right|} \right)}^2}}}\overrightarrow y $
Therefore vector projection of $b$ onto $a$ will be given as $\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{{{\left( {\left| a \right|} \right)}^2}}}\overrightarrow a $
Hence we are familiar to these terms in the vector projection of $b$ onto $a$
So directly putting their values we will get
$\therefore\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{{{\left( {\left| a \right|} \right)}^2}}}\overrightarrow a = \dfrac{{ - 1}}{{{7^2}}} < 3,\; - 6,\;2 > = \dfrac{{ - 1}}{{49}} < 3,\; - 6,\;2 > $
Therefore the required scalar and vector projections of the given vectors are $\dfrac{{ - 1}}{7}\;{\text{and}}\;\dfrac{{ - 1}}{{49}} < 3,\; - 6,\;2 > $ respectively.
Note:The given vectors $a = < 3,\; - 6,\;2 > \;{\text{and}}\;b = < 1,\;1,\;1 > $ can also be written as $a = \left( {3\widehat {\text{i}},\; - 6\widehat {\text{j}},\;2\widehat {\text{k}}} \right)\;{\text{and}}\;b = \left( {\widehat {\text{i}},\;\widehat {\text{j}},\;\widehat {\text{k}}} \right)$ where it $3\widehat {\text{i}}$ is read as “3 i-cap” it is also a form vector notation. Also the actual formula for dot product of two vectors $\overrightarrow x \;{\text{and}}\;\overrightarrow y $ is given as follows
$\overrightarrow x .\overrightarrow y = xy\cos \theta ,\;{\text{where}}\;\theta $ is the acute angle between the two vectors.
Where $\overrightarrow a .\;\overrightarrow b $ represents the dot product between $a\;{\text{and}}\;b$, $\left| a \right|$ represents the magnitude of the vector $a$.
Use the above information to find the respective scalar and vector projections.
Complete step by step answer:
In order to find the scalar projection of $b$ onto $a$ we have to first find the dot product of $a\;{\text{and}}\;b$. Dot product of two vectors $x = < a,\;b,\;c > \;{\text{and}}\;y = < e,\;f,\;g > $ is given as follows
$\overrightarrow x .\overrightarrow y = < a,\;b,\;c > . < e,\;f,\;g > = (a \times e + b \times f + c \times g)$
From the above formula of dot product performing the dot product of $a\;{\text{and}}\;b$, we will get,
$\overrightarrow a .\;\overrightarrow b = < 3,\; - 6,\;2 > . < 1,\;1,\;1 > = \left( {3 \times 1 + ( - 6) \times 1 + 2 \times 1} \right) = 3 - 6 + 2 = - 1 \\
\Rightarrow \overrightarrow a .\;\overrightarrow b = - 1 \\ $
Now we have to find the magnitude of $a$ in order to find the scalar projection of $b$ onto $a$. Magnitude of a vector $x = < a,\;b,\;c > $ is given as
$\left| x \right| = \left| {\sqrt {{a^2} + {b^2} + {c^2}} } \right|$
Using this to find the magnitude of $a = < 3,\; - 6,\;2 > $, we will get
$\left| a \right| = \left| {\sqrt {{3^2} + {{( - 6)}^2} + {2^2}} } \right| = \left| {\sqrt {9 + 36 + 4} } \right| = \left| {\sqrt {49} } \right| = \left| { \pm 7} \right| = 7$
Scalar projection of a vector $x = < a,\;b,\;c > $ on to the vector $y = < e,\;f,\;g > $ is given as $\dfrac{{\overrightarrow y .\;\overrightarrow x }}{{\left| y \right|}}$
With the use of this formula the scalar projection of $b$ onto $a$ will be given as $\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{\left| a \right|}}$
Putting the values we will get
$\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{\left| a \right|}} = \dfrac{{ - 1}}{7}$
Now we will find the vector projection of $b$ onto $a$
Vector projection of a vector $x = < a,\;b,\;c > $ on to the vector $y = < e,\;f,\;g > $ is given as $\dfrac{{\overrightarrow y .\;\overrightarrow x }}{{{{\left( {\left| y \right|} \right)}^2}}}\overrightarrow y $
Therefore vector projection of $b$ onto $a$ will be given as $\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{{{\left( {\left| a \right|} \right)}^2}}}\overrightarrow a $
Hence we are familiar to these terms in the vector projection of $b$ onto $a$
So directly putting their values we will get
$\therefore\dfrac{{\overrightarrow a .\;\overrightarrow b }}{{{{\left( {\left| a \right|} \right)}^2}}}\overrightarrow a = \dfrac{{ - 1}}{{{7^2}}} < 3,\; - 6,\;2 > = \dfrac{{ - 1}}{{49}} < 3,\; - 6,\;2 > $
Therefore the required scalar and vector projections of the given vectors are $\dfrac{{ - 1}}{7}\;{\text{and}}\;\dfrac{{ - 1}}{{49}} < 3,\; - 6,\;2 > $ respectively.
Note:The given vectors $a = < 3,\; - 6,\;2 > \;{\text{and}}\;b = < 1,\;1,\;1 > $ can also be written as $a = \left( {3\widehat {\text{i}},\; - 6\widehat {\text{j}},\;2\widehat {\text{k}}} \right)\;{\text{and}}\;b = \left( {\widehat {\text{i}},\;\widehat {\text{j}},\;\widehat {\text{k}}} \right)$ where it $3\widehat {\text{i}}$ is read as “3 i-cap” it is also a form vector notation. Also the actual formula for dot product of two vectors $\overrightarrow x \;{\text{and}}\;\overrightarrow y $ is given as follows
$\overrightarrow x .\overrightarrow y = xy\cos \theta ,\;{\text{where}}\;\theta $ is the acute angle between the two vectors.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE