Answer

Verified

383.4k+ views

**Hint:**First we will reduce the equation further if possible. Then we will try to factorise the terms in the equation. Then solve the equation by using the expansion of ${a^2} - {b^2}$ and find the appropriate solution for the equation. Split the middle term and finally factorise the final term.

**Complete step-by-step solution:**

We will start off by reducing any reducible terms in the equation. But as you can see here, the equation ${x^3} - {x^2} - 17x + 15 = 0$ is not a perfect cube.

Now we know that the sum of the coefficients is $0$. That is

$1 + 1 - 17 + 15 = 0$

So, now we also know that, $x = 1$ is a root and $(x - 1)$ a factor. Now we will convert the cubic equation to a quadratic equation by splitting the middle term and then taking all the like terms together form two expressions.

$

{x^3} - {x^2} - 17x + 15 = 0 \\

(x - 1)({x^2} + 2x - 15) = 0 \\

$

Also, here note that $5 \times 3 = 15$ and $5 - 3 = 2$ so that,

$

= {x^3} - {x^2} - 17x + 15 \\

= (x - 1)(x + 5)(x - 3) \\

$

So, the other two roots are $x = - 5$ and $x = 3$.

**Additional information:**Rational roots test is one of the methods to solve such types of questions. It would only find Rational roots that are numbers $x$ which can be expressed as the quotient of two integers. The rational root theorem states that if a polynomial zero for a rational number P/Q then P is a factor of the Trailing Constant and Q is a factor of the Leading Coefficient.

**Note:**While splitting the middle term be careful. After splitting the middle term Do not solve all the equations simultaneously. Solve all the equations separately, so that you don’t miss any term of the solution. Check if the solution satisfies the original equation completely. If any term of the solution doesn’t satisfy the equation, then that term will not be considered as a part of the solution.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE