Answer

Verified

448.2k+ views

Hint: To find the roots of the given equation by completing the square method, simplify the terms on the left hand side of the given equation in the form of a complete square. Equate the left hand side of the equation to zero and simplify to find the roots.

Complete step-by-step answer:

We have to find the roots of the quadratic equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] by method of completing the square. To do so, we will rearrange the terms on left hand side of the equation to make a perfect square and equate it to zero to find the roots.

We can rewrite the equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] as \[{{x}^{2}}-2\times \dfrac{1}{2}\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\].

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}=0\].

To complete the square, we will add the given equation by the square of \[\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)\] on both sides.

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}=0\] as \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}={{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}\].

We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)-\sqrt{2}\].

Simplifying the right side of this equation, we have

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2}\right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{\sqrt{2}}-\sqrt{2}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1-2}{\sqrt{2}}=\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{\sqrt{2}}\].

We also know that \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\].

So, we can write the left side of equation as \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}={{\left( x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right) \right)}^{2}}\].

Similarly, we can write the right side of equation as \[\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{\sqrt{2}}={{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)}^{2}}\].

Thus, we can write the equation as

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)-\sqrt{2}\] as \[{{\left( x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right) \right)}^{2}}={{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)}^{2}}\].

Taking square root on both sides, we have \[x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)=\pm \dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\].

Further simplifying the above equation, we have

$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\]

$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)\].

So, we have

$\Rightarrow$\[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\]

$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)=1\]

Hence, the roots of the quadratic equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] are \[x=\sqrt{2},1\], which is option (a).

Note: There are multiple ways to solve this quadratic equation. We can also solve it using the factorization method by splitting the middle terms. We solved it by completing the square as it was given in the question. We can also check that the roots calculated by us are correct or not by substituting the roots in the quadratic equation and checking whether they satisfy the given equation or not.

Complete step-by-step answer:

We have to find the roots of the quadratic equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] by method of completing the square. To do so, we will rearrange the terms on left hand side of the equation to make a perfect square and equate it to zero to find the roots.

We can rewrite the equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] as \[{{x}^{2}}-2\times \dfrac{1}{2}\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\].

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}=0\].

To complete the square, we will add the given equation by the square of \[\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)\] on both sides.

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}=0\] as \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+\sqrt{2}+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}={{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}\].

We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)-\sqrt{2}\].

Simplifying the right side of this equation, we have

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2}\right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{\sqrt{2}}-\sqrt{2}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1-2}{\sqrt{2}}=\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{\sqrt{2}}\].

We also know that \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\].

So, we can write the left side of equation as \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}={{\left( x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right) \right)}^{2}}\].

Similarly, we can write the right side of equation as \[\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{\sqrt{2}}={{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)}^{2}}\].

Thus, we can write the equation as

$\Rightarrow$ \[{{x}^{2}}-2\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)x+{{\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)}^{2}}=\dfrac{1}{2}+\dfrac{1}{4}+2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)-\sqrt{2}\] as \[{{\left( x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right) \right)}^{2}}={{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)}^{2}}\].

Taking square root on both sides, we have \[x-\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2} \right)=\pm \dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\].

Further simplifying the above equation, we have

$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\]

$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)\].

So, we have

$\Rightarrow$\[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\]

$\Rightarrow$ \[x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{2} \right)=1\]

Hence, the roots of the quadratic equation \[{{x}^{2}}-\left( \sqrt{2}+1 \right)x+\sqrt{2}=0\] are \[x=\sqrt{2},1\], which is option (a).

Note: There are multiple ways to solve this quadratic equation. We can also solve it using the factorization method by splitting the middle terms. We solved it by completing the square as it was given in the question. We can also check that the roots calculated by us are correct or not by substituting the roots in the quadratic equation and checking whether they satisfy the given equation or not.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How many crores make 10 million class 7 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths