Find the remainder when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by $7$.
Answer
Verified
508.2k+ views
Hint: Write 32 as ${2^5}$ and then 2 as (3-1). Solve the expression in power first, using binomial expansion and then proceed.
We know that 32 can be written as ${2^5}$.
So, ${\left( {32} \right)^{32}}$ can be simplified as:
$ \Rightarrow {\left( {32} \right)^{32}} = {\left( {{2^5}} \right)^{32}} = {\left( 2 \right)^{160}} = {\left( {3 - 1} \right)^{160}}$
Now, we will expand ${\left( {3 - 1} \right)^{160}}$ using binomial expansion:
\[
\Rightarrow {\left( {3 - 1} \right)^{160}}{ = ^{160}}{C_0}{\left( 3 \right)^{160}}{ - ^{160}}{C_1}{\left( 3 \right)^{159}} + .....{ - ^{160}}{C_{159}}{\left( 3 \right)^1}{ + ^{160}}{C_{160}}{\left( 3 \right)^0}, \\
\Rightarrow {\left( {3 - 1} \right)^{160}} = 3\left[ {^{160}{C_0}{{\left( 3 \right)}^{159}}{ - ^{160}}{C_1}{{\left( 3 \right)}^{158}} + .....{ - ^{160}}{C_{159}}{{\left( 3 \right)}^0}} \right] + 1, \\
\]
\[ \Rightarrow {\left( {3 - 1} \right)^{160}} = 3k + 1\] where $k \in N$
Now, ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$ can be simplified as:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {32} \right)^{\left( {3k + 1} \right)}} \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {{2^5}} \right)^{\left( {3k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{\left( {15k + 5} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{3\left( {5k + 1} \right)}} \times {2^2}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4 \times {8^{\left( {5k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4{\left( {7 + 1} \right)^{5k + 1}} \\
\]
For \[{\left( {7 + 1} \right)^{5k + 1}}\] we’ll again use binomial expansion:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {^{5k + 1}{C_0}{7^{5k + 1}}{ + ^{5k + 1}}{C_1}{7^{5k}} + .....{ + ^{5k + 1}}{C_{5k}}{7^1} + 1} \right], \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {7n + 1} \right], \\
\]
\[ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 28n + 4\] where $n \in N$
We know that $28n$ will always be a multiple of 7. Therefore if we divide \[28n + 4\] by 7, we will get 4 as the remainder.
Therefore when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by 7, the remainder is 4.
Note: Whenever we have to find the remainder when some number (let it be $D$) is divided by another number (let it be $d$), we try to convert $D$ in the form of $d$:
$ \Rightarrow D = dn + k$
So, $k$ comes out as a remainder.
We know that 32 can be written as ${2^5}$.
So, ${\left( {32} \right)^{32}}$ can be simplified as:
$ \Rightarrow {\left( {32} \right)^{32}} = {\left( {{2^5}} \right)^{32}} = {\left( 2 \right)^{160}} = {\left( {3 - 1} \right)^{160}}$
Now, we will expand ${\left( {3 - 1} \right)^{160}}$ using binomial expansion:
\[
\Rightarrow {\left( {3 - 1} \right)^{160}}{ = ^{160}}{C_0}{\left( 3 \right)^{160}}{ - ^{160}}{C_1}{\left( 3 \right)^{159}} + .....{ - ^{160}}{C_{159}}{\left( 3 \right)^1}{ + ^{160}}{C_{160}}{\left( 3 \right)^0}, \\
\Rightarrow {\left( {3 - 1} \right)^{160}} = 3\left[ {^{160}{C_0}{{\left( 3 \right)}^{159}}{ - ^{160}}{C_1}{{\left( 3 \right)}^{158}} + .....{ - ^{160}}{C_{159}}{{\left( 3 \right)}^0}} \right] + 1, \\
\]
\[ \Rightarrow {\left( {3 - 1} \right)^{160}} = 3k + 1\] where $k \in N$
Now, ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$ can be simplified as:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {32} \right)^{\left( {3k + 1} \right)}} \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {{2^5}} \right)^{\left( {3k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{\left( {15k + 5} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{3\left( {5k + 1} \right)}} \times {2^2}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4 \times {8^{\left( {5k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4{\left( {7 + 1} \right)^{5k + 1}} \\
\]
For \[{\left( {7 + 1} \right)^{5k + 1}}\] we’ll again use binomial expansion:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {^{5k + 1}{C_0}{7^{5k + 1}}{ + ^{5k + 1}}{C_1}{7^{5k}} + .....{ + ^{5k + 1}}{C_{5k}}{7^1} + 1} \right], \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {7n + 1} \right], \\
\]
\[ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 28n + 4\] where $n \in N$
We know that $28n$ will always be a multiple of 7. Therefore if we divide \[28n + 4\] by 7, we will get 4 as the remainder.
Therefore when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by 7, the remainder is 4.
Note: Whenever we have to find the remainder when some number (let it be $D$) is divided by another number (let it be $d$), we try to convert $D$ in the form of $d$:
$ \Rightarrow D = dn + k$
So, $k$ comes out as a remainder.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE