# Find the remainder when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by $7$.

Last updated date: 31st Mar 2023

•

Total views: 308.4k

•

Views today: 7.85k

Answer

Verified

308.4k+ views

Hint: Write 32 as ${2^5}$ and then 2 as (3-1). Solve the expression in power first, using binomial expansion and then proceed.

We know that 32 can be written as ${2^5}$.

So, ${\left( {32} \right)^{32}}$ can be simplified as:

$ \Rightarrow {\left( {32} \right)^{32}} = {\left( {{2^5}} \right)^{32}} = {\left( 2 \right)^{160}} = {\left( {3 - 1} \right)^{160}}$

Now, we will expand ${\left( {3 - 1} \right)^{160}}$ using binomial expansion:

\[

\Rightarrow {\left( {3 - 1} \right)^{160}}{ = ^{160}}{C_0}{\left( 3 \right)^{160}}{ - ^{160}}{C_1}{\left( 3 \right)^{159}} + .....{ - ^{160}}{C_{159}}{\left( 3 \right)^1}{ + ^{160}}{C_{160}}{\left( 3 \right)^0}, \\

\Rightarrow {\left( {3 - 1} \right)^{160}} = 3\left[ {^{160}{C_0}{{\left( 3 \right)}^{159}}{ - ^{160}}{C_1}{{\left( 3 \right)}^{158}} + .....{ - ^{160}}{C_{159}}{{\left( 3 \right)}^0}} \right] + 1, \\

\]

\[ \Rightarrow {\left( {3 - 1} \right)^{160}} = 3k + 1\] where $k \in N$

Now, ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$ can be simplified as:

\[

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {32} \right)^{\left( {3k + 1} \right)}} \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {{2^5}} \right)^{\left( {3k + 1} \right)}}, \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{\left( {15k + 5} \right)}}, \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{3\left( {5k + 1} \right)}} \times {2^2}, \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4 \times {8^{\left( {5k + 1} \right)}}, \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4{\left( {7 + 1} \right)^{5k + 1}} \\

\]

For \[{\left( {7 + 1} \right)^{5k + 1}}\] we’ll again use binomial expansion:

\[

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {^{5k + 1}{C_0}{7^{5k + 1}}{ + ^{5k + 1}}{C_1}{7^{5k}} + .....{ + ^{5k + 1}}{C_{5k}}{7^1} + 1} \right], \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {7n + 1} \right], \\

\]

\[ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 28n + 4\] where $n \in N$

We know that $28n$ will always be a multiple of 7. Therefore if we divide \[28n + 4\] by 7, we will get 4 as the remainder.

Therefore when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by 7, the remainder is 4.

Note: Whenever we have to find the remainder when some number (let it be $D$) is divided by another number (let it be $d$), we try to convert $D$ in the form of $d$:

$ \Rightarrow D = dn + k$

So, $k$ comes out as a remainder.

We know that 32 can be written as ${2^5}$.

So, ${\left( {32} \right)^{32}}$ can be simplified as:

$ \Rightarrow {\left( {32} \right)^{32}} = {\left( {{2^5}} \right)^{32}} = {\left( 2 \right)^{160}} = {\left( {3 - 1} \right)^{160}}$

Now, we will expand ${\left( {3 - 1} \right)^{160}}$ using binomial expansion:

\[

\Rightarrow {\left( {3 - 1} \right)^{160}}{ = ^{160}}{C_0}{\left( 3 \right)^{160}}{ - ^{160}}{C_1}{\left( 3 \right)^{159}} + .....{ - ^{160}}{C_{159}}{\left( 3 \right)^1}{ + ^{160}}{C_{160}}{\left( 3 \right)^0}, \\

\Rightarrow {\left( {3 - 1} \right)^{160}} = 3\left[ {^{160}{C_0}{{\left( 3 \right)}^{159}}{ - ^{160}}{C_1}{{\left( 3 \right)}^{158}} + .....{ - ^{160}}{C_{159}}{{\left( 3 \right)}^0}} \right] + 1, \\

\]

\[ \Rightarrow {\left( {3 - 1} \right)^{160}} = 3k + 1\] where $k \in N$

Now, ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$ can be simplified as:

\[

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {32} \right)^{\left( {3k + 1} \right)}} \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {{2^5}} \right)^{\left( {3k + 1} \right)}}, \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{\left( {15k + 5} \right)}}, \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{3\left( {5k + 1} \right)}} \times {2^2}, \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4 \times {8^{\left( {5k + 1} \right)}}, \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4{\left( {7 + 1} \right)^{5k + 1}} \\

\]

For \[{\left( {7 + 1} \right)^{5k + 1}}\] we’ll again use binomial expansion:

\[

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {^{5k + 1}{C_0}{7^{5k + 1}}{ + ^{5k + 1}}{C_1}{7^{5k}} + .....{ + ^{5k + 1}}{C_{5k}}{7^1} + 1} \right], \\

\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {7n + 1} \right], \\

\]

\[ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 28n + 4\] where $n \in N$

We know that $28n$ will always be a multiple of 7. Therefore if we divide \[28n + 4\] by 7, we will get 4 as the remainder.

Therefore when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by 7, the remainder is 4.

Note: Whenever we have to find the remainder when some number (let it be $D$) is divided by another number (let it be $d$), we try to convert $D$ in the form of $d$:

$ \Rightarrow D = dn + k$

So, $k$ comes out as a remainder.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE