
Find the remainder when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by $7$.
Answer
609.3k+ views
Hint: Write 32 as ${2^5}$ and then 2 as (3-1). Solve the expression in power first, using binomial expansion and then proceed.
We know that 32 can be written as ${2^5}$.
So, ${\left( {32} \right)^{32}}$ can be simplified as:
$ \Rightarrow {\left( {32} \right)^{32}} = {\left( {{2^5}} \right)^{32}} = {\left( 2 \right)^{160}} = {\left( {3 - 1} \right)^{160}}$
Now, we will expand ${\left( {3 - 1} \right)^{160}}$ using binomial expansion:
\[
\Rightarrow {\left( {3 - 1} \right)^{160}}{ = ^{160}}{C_0}{\left( 3 \right)^{160}}{ - ^{160}}{C_1}{\left( 3 \right)^{159}} + .....{ - ^{160}}{C_{159}}{\left( 3 \right)^1}{ + ^{160}}{C_{160}}{\left( 3 \right)^0}, \\
\Rightarrow {\left( {3 - 1} \right)^{160}} = 3\left[ {^{160}{C_0}{{\left( 3 \right)}^{159}}{ - ^{160}}{C_1}{{\left( 3 \right)}^{158}} + .....{ - ^{160}}{C_{159}}{{\left( 3 \right)}^0}} \right] + 1, \\
\]
\[ \Rightarrow {\left( {3 - 1} \right)^{160}} = 3k + 1\] where $k \in N$
Now, ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$ can be simplified as:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {32} \right)^{\left( {3k + 1} \right)}} \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {{2^5}} \right)^{\left( {3k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{\left( {15k + 5} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{3\left( {5k + 1} \right)}} \times {2^2}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4 \times {8^{\left( {5k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4{\left( {7 + 1} \right)^{5k + 1}} \\
\]
For \[{\left( {7 + 1} \right)^{5k + 1}}\] we’ll again use binomial expansion:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {^{5k + 1}{C_0}{7^{5k + 1}}{ + ^{5k + 1}}{C_1}{7^{5k}} + .....{ + ^{5k + 1}}{C_{5k}}{7^1} + 1} \right], \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {7n + 1} \right], \\
\]
\[ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 28n + 4\] where $n \in N$
We know that $28n$ will always be a multiple of 7. Therefore if we divide \[28n + 4\] by 7, we will get 4 as the remainder.
Therefore when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by 7, the remainder is 4.
Note: Whenever we have to find the remainder when some number (let it be $D$) is divided by another number (let it be $d$), we try to convert $D$ in the form of $d$:
$ \Rightarrow D = dn + k$
So, $k$ comes out as a remainder.
We know that 32 can be written as ${2^5}$.
So, ${\left( {32} \right)^{32}}$ can be simplified as:
$ \Rightarrow {\left( {32} \right)^{32}} = {\left( {{2^5}} \right)^{32}} = {\left( 2 \right)^{160}} = {\left( {3 - 1} \right)^{160}}$
Now, we will expand ${\left( {3 - 1} \right)^{160}}$ using binomial expansion:
\[
\Rightarrow {\left( {3 - 1} \right)^{160}}{ = ^{160}}{C_0}{\left( 3 \right)^{160}}{ - ^{160}}{C_1}{\left( 3 \right)^{159}} + .....{ - ^{160}}{C_{159}}{\left( 3 \right)^1}{ + ^{160}}{C_{160}}{\left( 3 \right)^0}, \\
\Rightarrow {\left( {3 - 1} \right)^{160}} = 3\left[ {^{160}{C_0}{{\left( 3 \right)}^{159}}{ - ^{160}}{C_1}{{\left( 3 \right)}^{158}} + .....{ - ^{160}}{C_{159}}{{\left( 3 \right)}^0}} \right] + 1, \\
\]
\[ \Rightarrow {\left( {3 - 1} \right)^{160}} = 3k + 1\] where $k \in N$
Now, ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$ can be simplified as:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {32} \right)^{\left( {3k + 1} \right)}} \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {{2^5}} \right)^{\left( {3k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{\left( {15k + 5} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{3\left( {5k + 1} \right)}} \times {2^2}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4 \times {8^{\left( {5k + 1} \right)}}, \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4{\left( {7 + 1} \right)^{5k + 1}} \\
\]
For \[{\left( {7 + 1} \right)^{5k + 1}}\] we’ll again use binomial expansion:
\[
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {^{5k + 1}{C_0}{7^{5k + 1}}{ + ^{5k + 1}}{C_1}{7^{5k}} + .....{ + ^{5k + 1}}{C_{5k}}{7^1} + 1} \right], \\
\Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {7n + 1} \right], \\
\]
\[ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 28n + 4\] where $n \in N$
We know that $28n$ will always be a multiple of 7. Therefore if we divide \[28n + 4\] by 7, we will get 4 as the remainder.
Therefore when ${\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}$is divided by 7, the remainder is 4.
Note: Whenever we have to find the remainder when some number (let it be $D$) is divided by another number (let it be $d$), we try to convert $D$ in the form of $d$:
$ \Rightarrow D = dn + k$
So, $k$ comes out as a remainder.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

