Answer
Verified
426k+ views
Hint:The reference angle is the angle between the terminal arm of the angle and the “x” axis always larger than zero degrees and smaller that each degree is divided into \[{60^ \circ }\] equal minutes and each minute is further divided into equal \[60\] seconds. The relation between degree and radian is given by the formula, \[{1^ \circ } = \dfrac{\pi }{{180}}\] where \[\pi \] a constant is whose value is approximately equal to\[3.14\].
Complete step by step answer:
Since, 120 degrees is in quadrant 2, the reference angle represented by \[\theta \]can be found by solving the equation\[120 + \theta = 180\]. Hence we can have the value of \[\theta \] from the equation as \[60\] by subtracting \[180\] from \[120\].
To convert this to radians we multiply by the ratio\[\dfrac{\pi }{{180}}\].
Hence we have,
\[60 \times \dfrac{\pi }{{180}}\]
We can have \[180\] cancelling \[60\] and become a \[3\] in the denominator.This leaves us with \[\dfrac{\pi }{3}\] radians, which is our reference angle in radians.
Note: Students may go wrong while converting the value from degree to radian, is that they might think that both \[\pi \] and \[{180^ \circ }\] are same in this instance as although we use both for same purpose as in angular form \[\pi \] is considered as \[{180^ \circ }\] but not here, here we need the value of \[\pi \] which is \[3.1415\] so they won’t cut themselves to reduced value of 1. The radian measure corresponding to the degree measure is obtained after converting them into radian by multiplying them with \[\dfrac{\pi }{{180}}\].The reference angle represented by \[\theta \] can be found by solving the equation \[120 + \theta = 180\] when in quadrant two.
Complete step by step answer:
Since, 120 degrees is in quadrant 2, the reference angle represented by \[\theta \]can be found by solving the equation\[120 + \theta = 180\]. Hence we can have the value of \[\theta \] from the equation as \[60\] by subtracting \[180\] from \[120\].
To convert this to radians we multiply by the ratio\[\dfrac{\pi }{{180}}\].
Hence we have,
\[60 \times \dfrac{\pi }{{180}}\]
We can have \[180\] cancelling \[60\] and become a \[3\] in the denominator.This leaves us with \[\dfrac{\pi }{3}\] radians, which is our reference angle in radians.
Note: Students may go wrong while converting the value from degree to radian, is that they might think that both \[\pi \] and \[{180^ \circ }\] are same in this instance as although we use both for same purpose as in angular form \[\pi \] is considered as \[{180^ \circ }\] but not here, here we need the value of \[\pi \] which is \[3.1415\] so they won’t cut themselves to reduced value of 1. The radian measure corresponding to the degree measure is obtained after converting them into radian by multiplying them with \[\dfrac{\pi }{{180}}\].The reference angle represented by \[\theta \] can be found by solving the equation \[120 + \theta = 180\] when in quadrant two.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE