
Find the range of \['a'\] for which the parabola \[y=a{{x}^{2}}\] and the unit circle with centre at \[(0,1)\] meet each other at two points other than origin.
Answer
621k+ views
Hint: To find the range of \['a'\] for which the parabola and the circle intersect each other at points other than origin, we will first find the equation of the circle with the given centre and then substitute the equation of the parabola in the equation of the circle and solve it to get the desired range.
Complete step-by-step answer:
We have a parabola of the form \[y=a{{x}^{2}}\] and a unit circle with centre at \[(0,1)\].
We want to find the range of \['a'\] for which the two curves will intersect at points other than the origin.
We know that the equation of circle with centre \[(h,k)\] and radius \[r\] is\[{{(x-h)}^{2}}+{{(y-
k)}^{2}}={{r}^{2}}\].
Substituting \[h=0,k=1,r=1\] in the above equation, we get \[{{x}^{2}}+{{(y-1)}^{2}}={{1}^{2}}\]
\[...(1)\] as the equation of our circle.
Now, we have \[y=a{{x}^{2}}\] \[...(2)\] as the equation of our parabola.
To find the point of intersection of the two curves, we will rewrite the equation of parabola
as \[\dfrac{y}{a}={{x}^{2}}\] \[...(3)\]
We will substitute this equation of parabola in equation \[(1)\].
Thus, we get
\[\begin{align}
&\Rightarrow\dfrac{y}{a}+{{(y-1)^{2}}}={{1}^{2}}\\
&\Rightarrow\dfrac{y}{a}+{{y}^{2}}+1-2y=1
\\ &\Rightarrow\dfrac{y}{a}+{{y}^{2}}-2y=0
\end{align}\]
Now factorizing the above equation, we get \[y(\dfrac{1}{a}+y-2)=0\].
So, we have
\[\Rightarrow y=0,y=2-\dfrac{1}{a}\]
Thus, for a point of intersection of two curves other than the origin, we have \[y=2-\dfrac{1}{a}\].
Substituting the above value of \[y\] in the equation \[(3)\], we get \[{{x}^{2}}=\dfrac{y}{a}=\dfrac{2}{a}-\dfrac{1}{{{a}^{2}}}\].
As we are excluding the origin from our point of intersection of the two curves, we have \[{{x}^{2}}>0\]
\[\begin{align}
& \Rightarrow \dfrac{2}{a}-\dfrac{1}{{{a}^{2}}}>0 \\
& \Rightarrow \dfrac{2a-1}{{{a}^{2}}}>0 \\
& \Rightarrow 2a-1>0 \\
& \Rightarrow a>\dfrac{1}{2} \\
\end{align}\]
\[\Rightarrow a\in \left( \dfrac{1}{2},\infty \right)\]
Hence, the required range of value of \['a'\] is \[a\in \left( \dfrac{1}{2},\infty \right)\].
Note: We can also solve this question by substituting the value of \[y\] in terms of \[x\] and then solve for \[x\]. However, that will be time consuming to calculate. Also, one must keep in mind that \[{{x}^{2}}>0\] as we are looking for points of intersection of two curves other than the origin.
Complete step-by-step answer:
We have a parabola of the form \[y=a{{x}^{2}}\] and a unit circle with centre at \[(0,1)\].
We want to find the range of \['a'\] for which the two curves will intersect at points other than the origin.
We know that the equation of circle with centre \[(h,k)\] and radius \[r\] is\[{{(x-h)}^{2}}+{{(y-
k)}^{2}}={{r}^{2}}\].
Substituting \[h=0,k=1,r=1\] in the above equation, we get \[{{x}^{2}}+{{(y-1)}^{2}}={{1}^{2}}\]
\[...(1)\] as the equation of our circle.
Now, we have \[y=a{{x}^{2}}\] \[...(2)\] as the equation of our parabola.
To find the point of intersection of the two curves, we will rewrite the equation of parabola
as \[\dfrac{y}{a}={{x}^{2}}\] \[...(3)\]
We will substitute this equation of parabola in equation \[(1)\].
Thus, we get
\[\begin{align}
&\Rightarrow\dfrac{y}{a}+{{(y-1)^{2}}}={{1}^{2}}\\
&\Rightarrow\dfrac{y}{a}+{{y}^{2}}+1-2y=1
\\ &\Rightarrow\dfrac{y}{a}+{{y}^{2}}-2y=0
\end{align}\]
Now factorizing the above equation, we get \[y(\dfrac{1}{a}+y-2)=0\].
So, we have
\[\Rightarrow y=0,y=2-\dfrac{1}{a}\]
Thus, for a point of intersection of two curves other than the origin, we have \[y=2-\dfrac{1}{a}\].
Substituting the above value of \[y\] in the equation \[(3)\], we get \[{{x}^{2}}=\dfrac{y}{a}=\dfrac{2}{a}-\dfrac{1}{{{a}^{2}}}\].
As we are excluding the origin from our point of intersection of the two curves, we have \[{{x}^{2}}>0\]
\[\begin{align}
& \Rightarrow \dfrac{2}{a}-\dfrac{1}{{{a}^{2}}}>0 \\
& \Rightarrow \dfrac{2a-1}{{{a}^{2}}}>0 \\
& \Rightarrow 2a-1>0 \\
& \Rightarrow a>\dfrac{1}{2} \\
\end{align}\]
\[\Rightarrow a\in \left( \dfrac{1}{2},\infty \right)\]
Hence, the required range of value of \['a'\] is \[a\in \left( \dfrac{1}{2},\infty \right)\].
Note: We can also solve this question by substituting the value of \[y\] in terms of \[x\] and then solve for \[x\]. However, that will be time consuming to calculate. Also, one must keep in mind that \[{{x}^{2}}>0\] as we are looking for points of intersection of two curves other than the origin.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

