Answer

Verified

434.7k+ views

Hint: First change the expression ${{\left( a+bx \right)}^{-1}}$ as $\dfrac{1}{a}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$ and find its ${{\left( r+1 \right)}^{\text{th}}}$ term using the formula,

${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$ to get what is asked in the question.

Complete step-by-step answer:

We have to find the ${{\left( r+1 \right)}^{\text{th}}}$ term of the expression \[{{\left( a+bx \right)}^{-1}}\].

We have to first write or mention the general term that is the ${{\left( r+1 \right)}^{\text{th}}}$ term of ${{\left( 1+x \right)}^{n}}$ which is given by the formula,

${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}...........\left( i \right)$

Now let’s consider the expansion of ${{\left( a+bx \right)}^{-1}},$

Taking ‘a’ out of the bracket, we get

${{\left( a+bx \right)}^{-1}}={{\left\{ a\left( 1+\dfrac{b}{a}x \right) \right\}}^{-1}}$

Now we know the formula, ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$ , so the above equation can be written as,

${{\left( a+bx \right)}^{-1}}={{a}^{-1}}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$

So now it can be written as,

${{\left( a+bx \right)}^{-1}}=\dfrac{1}{a}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$

Now we have to find ${{T}_{r+1}}$ of the expression $\dfrac{1}{a}{{\left( 1+\dfrac{b}{a} \right)}^{-1}}$ which is,

${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{\left( -1 \right)\left( -1-1 \right)\left( -1-2 \right).........\left( -1-r+1 \right)}{r!} \right\}\times {{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}}$

${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{\left( -1 \right)\left( -2 \right)\left( -3 \right)......\left( -r \right)}{r!}{{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}} \right\}$

In the expression (-1)(-2)(-3)…………(-r) can be written as ${{\left( -1 \right)}^{r}}.r!$, so the above equation becomes,

${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{{{\left( -1 \right)}^{r}}r!}{r!}\times {{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}} \right\}$

Now combining the ‘a’ term, we get

${{T}_{r+1}}={{\left( -1 \right)}^{r}}\dfrac{{{b}^{r}}}{{{a}^{r+1}}}{{x}^{r}}$

Hence the ${{(r+1)}^{th}}$ term in the expansion of ${{\left( a+bx \right)}^{-1}}$ is ${{\left( -1 \right)}^{r}}\dfrac{{{b}^{r}}}{{{a}^{r+1}}}{{x}^{r}}.$

Note: Students must be careful while dealing with expansion related or identical to ${{\left( 1+x \right)}^{-n}}$ because in this the general formula of ${{T}_{r+1}}$ is expressed as,

${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$

Irrespective of what value n is. One should also be careful about its calculation mistakes as the solution is too long.

Students generally make mistakes by applying the general formula of ${{T}_{r+1}}$ directly in${{\left( a+bx \right)}^{-1}}$ . They will get wrong answer as ${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$ is the general formula for rth in expansion of ${{\left( 1+x \right)}^{-n}}$, that means one of the term should be 1.

${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$ to get what is asked in the question.

Complete step-by-step answer:

We have to find the ${{\left( r+1 \right)}^{\text{th}}}$ term of the expression \[{{\left( a+bx \right)}^{-1}}\].

We have to first write or mention the general term that is the ${{\left( r+1 \right)}^{\text{th}}}$ term of ${{\left( 1+x \right)}^{n}}$ which is given by the formula,

${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}...........\left( i \right)$

Now let’s consider the expansion of ${{\left( a+bx \right)}^{-1}},$

Taking ‘a’ out of the bracket, we get

${{\left( a+bx \right)}^{-1}}={{\left\{ a\left( 1+\dfrac{b}{a}x \right) \right\}}^{-1}}$

Now we know the formula, ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$ , so the above equation can be written as,

${{\left( a+bx \right)}^{-1}}={{a}^{-1}}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$

So now it can be written as,

${{\left( a+bx \right)}^{-1}}=\dfrac{1}{a}{{\left( 1+\dfrac{b}{a}x \right)}^{-1}}$

Now we have to find ${{T}_{r+1}}$ of the expression $\dfrac{1}{a}{{\left( 1+\dfrac{b}{a} \right)}^{-1}}$ which is,

${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{\left( -1 \right)\left( -1-1 \right)\left( -1-2 \right).........\left( -1-r+1 \right)}{r!} \right\}\times {{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}}$

${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{\left( -1 \right)\left( -2 \right)\left( -3 \right)......\left( -r \right)}{r!}{{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}} \right\}$

In the expression (-1)(-2)(-3)…………(-r) can be written as ${{\left( -1 \right)}^{r}}.r!$, so the above equation becomes,

${{T}_{r+1}}=\dfrac{1}{a}\left\{ \dfrac{{{\left( -1 \right)}^{r}}r!}{r!}\times {{\left( \dfrac{b}{a} \right)}^{r}}\times {{x}^{r}} \right\}$

Now combining the ‘a’ term, we get

${{T}_{r+1}}={{\left( -1 \right)}^{r}}\dfrac{{{b}^{r}}}{{{a}^{r+1}}}{{x}^{r}}$

Hence the ${{(r+1)}^{th}}$ term in the expansion of ${{\left( a+bx \right)}^{-1}}$ is ${{\left( -1 \right)}^{r}}\dfrac{{{b}^{r}}}{{{a}^{r+1}}}{{x}^{r}}.$

Note: Students must be careful while dealing with expansion related or identical to ${{\left( 1+x \right)}^{-n}}$ because in this the general formula of ${{T}_{r+1}}$ is expressed as,

${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$

Irrespective of what value n is. One should also be careful about its calculation mistakes as the solution is too long.

Students generally make mistakes by applying the general formula of ${{T}_{r+1}}$ directly in${{\left( a+bx \right)}^{-1}}$ . They will get wrong answer as ${{T}_{r+1}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)..........\left( n-r+1 \right)}{r!}{{x}^{r}}$ is the general formula for rth in expansion of ${{\left( 1+x \right)}^{-n}}$, that means one of the term should be 1.

Recently Updated Pages

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

Trending doubts

What is BLO What is the full form of BLO class 8 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What organs are located on the left side of your body class 11 biology CBSE

What is pollution? How many types of pollution? Define it