
Find the position of centre of mass of the quarter solid sphere from $C$ in which mass per unit volume is given as $\rho (r)={{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)$, where $r$ is the radial distance from centre and $R$ is the radius of solid quarter sphere.
$A.\dfrac{3}{10}R$
$B.\dfrac{3\sqrt{2}}{7}R$
$C.\dfrac{3\sqrt{2}}{10}R$
$D.\dfrac{3\sqrt{2}}{5}R$

Answer
464.1k+ views
Hint: We know that Centre of mass of a body is defined as the point at which the distribution of mass is equal in all directions. We will use the formula of centre of mass symmetric to the y-axis to solve the given problem. Method of integration is used to solve the problem.
Formula Used:
We are going to use the following formula to solve the problem:-
${{y}_{cm}}=\dfrac{\int\limits_{0}^{R}{\left[ {{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)2\pi {{r}^{2}}dr \right]\dfrac{r}{2}}}{\int\limits_{0}^{R}{\left[ {{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)2\pi {{r}^{2}}dr \right]}}$
Complete answer:
From the figure we cut an element of length $dr$. We know that the centre of mass is calculated by dividing the sum of product of mass moment of inertia and the mean distance by the sum of areas. In this case we have to integrate it to find the whole solid in terms of an element. We have the following parameters with us:-
Mass per unit volume is given as $\rho (r)={{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)$, where $r$ is the radial distance from centre, $R$ is the radius of solid quarter sphere and position of centre of mass of the quarter solid sphere is ${{y}_{cm}}$ .
Area of the cross section is given as $2\pi {{r}^{2}}dr$ and mean distance as $\dfrac{r}{2}$. Now, using following formula we have:-
${{y}_{cm}}=\dfrac{\int\limits_{0}^{R}{\left[ {{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)2\pi {{r}^{2}}dr \right]\dfrac{r}{2}}}{\int\limits_{0}^{R}{\left[ {{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)2\pi {{r}^{2}}dr \right]}}$
$\Rightarrow {{y}_{cm}}=\dfrac{\dfrac{2\pi {{\rho }_{o}}}{2}\int\limits_{0}^{R}{\left[ \left( \dfrac{R-r}{R} \right){{r}^{2}}dr \right]r}}{2\pi {{\rho }_{o}}\int\limits_{0}^{R}{\left[ \left( \dfrac{R-r}{R} \right){{r}^{2}}dr \right]}}$
Integrating further and solving we get,
${{y}_{cm}}=\dfrac{\dfrac{1}{2}\left( \dfrac{{{R}^{4}}}{4}-\dfrac{{{R}^{5}}}{5R} \right)}{\left( \dfrac{{{R}^{3}}}{3}-\dfrac{{{R}^{4}}}{4R} \right)}$
Solving further we get,
${{y}_{cm}}=\dfrac{3}{10}R$
Hence, option $(A)$ is correct.
Note:
We should be clear about our concept of centre of mass and centre of gravity. Different bodies with different geometric shapes have different points as the centre of mass. Centre of mass does not depend on the gravitational field but the centre of gravity does depend on the gravitational field. Centre of mass and centre of gravity of a body in a uniform gravitational field are always equal but they may be at different points if the gravitational field is not uniform.
Formula Used:
We are going to use the following formula to solve the problem:-
${{y}_{cm}}=\dfrac{\int\limits_{0}^{R}{\left[ {{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)2\pi {{r}^{2}}dr \right]\dfrac{r}{2}}}{\int\limits_{0}^{R}{\left[ {{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)2\pi {{r}^{2}}dr \right]}}$
Complete answer:

From the figure we cut an element of length $dr$. We know that the centre of mass is calculated by dividing the sum of product of mass moment of inertia and the mean distance by the sum of areas. In this case we have to integrate it to find the whole solid in terms of an element. We have the following parameters with us:-
Mass per unit volume is given as $\rho (r)={{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)$, where $r$ is the radial distance from centre, $R$ is the radius of solid quarter sphere and position of centre of mass of the quarter solid sphere is ${{y}_{cm}}$ .
Area of the cross section is given as $2\pi {{r}^{2}}dr$ and mean distance as $\dfrac{r}{2}$. Now, using following formula we have:-
${{y}_{cm}}=\dfrac{\int\limits_{0}^{R}{\left[ {{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)2\pi {{r}^{2}}dr \right]\dfrac{r}{2}}}{\int\limits_{0}^{R}{\left[ {{\rho }_{o}}\left( 1-\dfrac{r}{R} \right)2\pi {{r}^{2}}dr \right]}}$
$\Rightarrow {{y}_{cm}}=\dfrac{\dfrac{2\pi {{\rho }_{o}}}{2}\int\limits_{0}^{R}{\left[ \left( \dfrac{R-r}{R} \right){{r}^{2}}dr \right]r}}{2\pi {{\rho }_{o}}\int\limits_{0}^{R}{\left[ \left( \dfrac{R-r}{R} \right){{r}^{2}}dr \right]}}$
Integrating further and solving we get,
${{y}_{cm}}=\dfrac{\dfrac{1}{2}\left( \dfrac{{{R}^{4}}}{4}-\dfrac{{{R}^{5}}}{5R} \right)}{\left( \dfrac{{{R}^{3}}}{3}-\dfrac{{{R}^{4}}}{4R} \right)}$
Solving further we get,
${{y}_{cm}}=\dfrac{3}{10}R$
Hence, option $(A)$ is correct.
Note:
We should be clear about our concept of centre of mass and centre of gravity. Different bodies with different geometric shapes have different points as the centre of mass. Centre of mass does not depend on the gravitational field but the centre of gravity does depend on the gravitational field. Centre of mass and centre of gravity of a body in a uniform gravitational field are always equal but they may be at different points if the gravitational field is not uniform.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
