
Find the point on the x-axis which is equidistant from the points (– 2, 5) and (2, – 3).
Answer
522k+ views
Hint: We will let the point on the x-axis be (x, 0) as the point is equidistant from (– 2, 5) and (2, – 3). So, we will calculate the distance of the point (x, 0) to each of the two points and then compare them to find the value of x. Once we get that, we have the point on the x-axis.
Complete step-by-step answer:
We are asked to find the point on the x-axis which is equidistant from the point (– 2, 5) and (2, – 3). We know that the point on the x-axis has its y – coordinate as 0. So, let (x, 0) be the point on the x-axis which is equidistant from (– 2, 5) and (2, – 3).
The distance between the two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by the distance formula \[D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\] as we are given that (x, 0) is equidistant from (– 2, 5) and (2, – 3).
Now we will find their distance and then compare them to find our value of x.
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( x,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,5 \right)\]
So, the distance between them will be given as,
\[{{D}_{1}}=\sqrt{{{\left( -2-x \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}\]
We can write \[{{\left( -2-x \right)}^{2}}\] as
\[{{\left( -2-x \right)}^{2}}={{\left[ \left( - \right)\left( 2+x \right) \right]}^{2}}={{\left( 2+x \right)}^{2}}\]
So simplifying further, we get,
\[\Rightarrow {{D}_{1}}=\sqrt{{{\left( 2+x \right)}^{2}}+{{5}^{2}}}\]
Similarly, we can write, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( x,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2,-3 \right).\]
So, the distance between them will be given as,
\[{{D}_{2}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}\]
So simplifying further, we get,
\[\Rightarrow {{D}_{2}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{3}^{2}}}\]
As (x, 0) is equidistant from (– 2, 5) and (2, – 3), that means \[{{D}_{1}}={{D}_{2}}.\]
So, we get,
\[\sqrt{{{\left( 2+x \right)}^{2}}+{{5}^{2}}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{3}^{2}}}\]
Squaring both the sides, we get,
\[{{\left( 2+x \right)}^{2}}+{{5}^{2}}={{\left( 2-x \right)}^{2}}+{{3}^{2}}\]
Opening the square brackets to simplify, we get,
\[\Rightarrow {{x}^{2}}+4+4x+25={{x}^{2}}+4-4x+9\]
Cancelling the like terms, we get,
\[\Rightarrow 8x=9-25\]
\[\Rightarrow 8x=-16\]
Dividing both the sides by 8, we get,
\[\Rightarrow \dfrac{8x}{8}=\dfrac{-16}{8}\]
\[\Rightarrow x=-2\]
So, we get, x = – 2 which means that the point on the x-axis that is equidistant from (– 2, 5) and (2, – 3) is (– 2, 0).
Hence, the required answer is (– 2, 0).
Note: We can cross-check that our solution is correct or not by the following steps. We will find the distance between (– 2, 0) and the other two points and see if they are equal or not.
(i) Distance between (– 2, 0) and (– 2, 5).
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -2,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,5 \right)\]
\[{{D}_{1}}=\sqrt{{{\left( -2-\left( -2 \right) \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}\]
\[\Rightarrow {{D}_{1}}=\sqrt{0+{{5}^{2}}}\]
\[\Rightarrow {{D}_{1}}=5\]
We get the distance between (– 2, 0) and (– 2, 5) as 5 units.
(ii) Distance between (– 2, 0) and (2, – 3).
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -2,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2,-3 \right)\]
\[{{D}_{2}}=\sqrt{{{\left( 2-\left( -2 \right) \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}\]
\[\Rightarrow {{D}_{2}}=\sqrt{{{4}^{2}}+{{3}^{2}}}\]
\[\Rightarrow {{D}_{2}}=\sqrt{16+9}\]
\[\Rightarrow {{D}_{2}}=\sqrt{25}\]
\[\Rightarrow {{D}_{2}}=5\]
So again, we get the distance between (– 2, 0) and (– 2, 5) as 5 units.
So, our answer is correct.
Complete step-by-step answer:
We are asked to find the point on the x-axis which is equidistant from the point (– 2, 5) and (2, – 3). We know that the point on the x-axis has its y – coordinate as 0. So, let (x, 0) be the point on the x-axis which is equidistant from (– 2, 5) and (2, – 3).
The distance between the two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by the distance formula \[D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\] as we are given that (x, 0) is equidistant from (– 2, 5) and (2, – 3).
Now we will find their distance and then compare them to find our value of x.

Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( x,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,5 \right)\]
So, the distance between them will be given as,
\[{{D}_{1}}=\sqrt{{{\left( -2-x \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}\]
We can write \[{{\left( -2-x \right)}^{2}}\] as
\[{{\left( -2-x \right)}^{2}}={{\left[ \left( - \right)\left( 2+x \right) \right]}^{2}}={{\left( 2+x \right)}^{2}}\]
So simplifying further, we get,
\[\Rightarrow {{D}_{1}}=\sqrt{{{\left( 2+x \right)}^{2}}+{{5}^{2}}}\]
Similarly, we can write, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( x,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2,-3 \right).\]
So, the distance between them will be given as,
\[{{D}_{2}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}\]
So simplifying further, we get,
\[\Rightarrow {{D}_{2}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{3}^{2}}}\]
As (x, 0) is equidistant from (– 2, 5) and (2, – 3), that means \[{{D}_{1}}={{D}_{2}}.\]
So, we get,
\[\sqrt{{{\left( 2+x \right)}^{2}}+{{5}^{2}}}=\sqrt{{{\left( 2-x \right)}^{2}}+{{3}^{2}}}\]
Squaring both the sides, we get,
\[{{\left( 2+x \right)}^{2}}+{{5}^{2}}={{\left( 2-x \right)}^{2}}+{{3}^{2}}\]
Opening the square brackets to simplify, we get,
\[\Rightarrow {{x}^{2}}+4+4x+25={{x}^{2}}+4-4x+9\]
Cancelling the like terms, we get,
\[\Rightarrow 8x=9-25\]
\[\Rightarrow 8x=-16\]
Dividing both the sides by 8, we get,
\[\Rightarrow \dfrac{8x}{8}=\dfrac{-16}{8}\]
\[\Rightarrow x=-2\]
So, we get, x = – 2 which means that the point on the x-axis that is equidistant from (– 2, 5) and (2, – 3) is (– 2, 0).
Hence, the required answer is (– 2, 0).
Note: We can cross-check that our solution is correct or not by the following steps. We will find the distance between (– 2, 0) and the other two points and see if they are equal or not.
(i) Distance between (– 2, 0) and (– 2, 5).
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -2,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,5 \right)\]
\[{{D}_{1}}=\sqrt{{{\left( -2-\left( -2 \right) \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}\]
\[\Rightarrow {{D}_{1}}=\sqrt{0+{{5}^{2}}}\]
\[\Rightarrow {{D}_{1}}=5\]
We get the distance between (– 2, 0) and (– 2, 5) as 5 units.
(ii) Distance between (– 2, 0) and (2, – 3).
Let \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( -2,0 \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2,-3 \right)\]
\[{{D}_{2}}=\sqrt{{{\left( 2-\left( -2 \right) \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}\]
\[\Rightarrow {{D}_{2}}=\sqrt{{{4}^{2}}+{{3}^{2}}}\]
\[\Rightarrow {{D}_{2}}=\sqrt{16+9}\]
\[\Rightarrow {{D}_{2}}=\sqrt{25}\]
\[\Rightarrow {{D}_{2}}=5\]
So again, we get the distance between (– 2, 0) and (– 2, 5) as 5 units.
So, our answer is correct.
Recently Updated Pages
Power set of empty set has exactly subset class 11 maths CBSE

While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE
