Answer
Verified
425.1k+ views
Hint:To find the percentage increase of the area of the triangle we first find the area of the triangle by using the area of the triangle as:
Area of the triangle when all sides are same \[=\dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
The triangle is taken as an equilateral triangle as each side is doubled and for every side to increase equally all the sides are to be the same.
Complete step by step solution:
Let us assume the area of the triangle as \[=\dfrac{\sqrt{3}}{4}side{{s}^{2}}\] which is the area of the equilateral triangle, an equilateral triangle is a triangle which divides the triangle into half each producing two right angle triangles hence, let us assume the value of the sides as \[x\].
\[\Rightarrow \dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}\times x\times x\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}{{x}^{2}}\]
Now to find the area of the triangle after the sides are increased is by \[2x\] and we place this value in the area of the triangle as:
\[\Rightarrow \dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}\times 2x\times 2x\]
\[\Rightarrow \sqrt{3}{{x}^{2}}\]
Hence, the area when the sides are doubled is given as\[\sqrt{3}{{x}^{2}}\]
Now to find the increase in the area from the original, we get the increase in area as:
Increased Area\[-\] Original Area\[=\] Difference in the Area
Placing the area in the above formula, we get the difference as:
\[\Rightarrow \sqrt{3}{{x}^{2}}-\dfrac{\sqrt{3}}{4}{{x}^{2}}=\dfrac{3\sqrt{3}}{4}{{x}^{2}}\]
Now forming a percentage for the increased value as:
\[\Rightarrow \dfrac{\dfrac{3\sqrt{3}}{4}{{x}^{2}}}{\dfrac{\sqrt{3}}{4}{{x}^{2}}}\times 100\]
\[\Rightarrow 300%\]
Note: Students may go wrong if they use any other triangle other than equilateral triangle such as scalene triangle, right angle triangle or isosceles triangle as the increase in area has to be equal from each side of the triangle therefore, we use the equilateral triangle.
Area of the triangle when all sides are same \[=\dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
The triangle is taken as an equilateral triangle as each side is doubled and for every side to increase equally all the sides are to be the same.
Complete step by step solution:
Let us assume the area of the triangle as \[=\dfrac{\sqrt{3}}{4}side{{s}^{2}}\] which is the area of the equilateral triangle, an equilateral triangle is a triangle which divides the triangle into half each producing two right angle triangles hence, let us assume the value of the sides as \[x\].
\[\Rightarrow \dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}\times x\times x\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}{{x}^{2}}\]
Now to find the area of the triangle after the sides are increased is by \[2x\] and we place this value in the area of the triangle as:
\[\Rightarrow \dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}\times 2x\times 2x\]
\[\Rightarrow \sqrt{3}{{x}^{2}}\]
Hence, the area when the sides are doubled is given as\[\sqrt{3}{{x}^{2}}\]
Now to find the increase in the area from the original, we get the increase in area as:
Increased Area\[-\] Original Area\[=\] Difference in the Area
Placing the area in the above formula, we get the difference as:
\[\Rightarrow \sqrt{3}{{x}^{2}}-\dfrac{\sqrt{3}}{4}{{x}^{2}}=\dfrac{3\sqrt{3}}{4}{{x}^{2}}\]
Now forming a percentage for the increased value as:
\[\Rightarrow \dfrac{\dfrac{3\sqrt{3}}{4}{{x}^{2}}}{\dfrac{\sqrt{3}}{4}{{x}^{2}}}\times 100\]
\[\Rightarrow 300%\]
Note: Students may go wrong if they use any other triangle other than equilateral triangle such as scalene triangle, right angle triangle or isosceles triangle as the increase in area has to be equal from each side of the triangle therefore, we use the equilateral triangle.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE