Find the percentage increase in the area of a triangle if its each side is doubled.
Answer
Verified
437.4k+ views
Hint:To find the percentage increase of the area of the triangle we first find the area of the triangle by using the area of the triangle as:
Area of the triangle when all sides are same \[=\dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
The triangle is taken as an equilateral triangle as each side is doubled and for every side to increase equally all the sides are to be the same.
Complete step by step solution:
Let us assume the area of the triangle as \[=\dfrac{\sqrt{3}}{4}side{{s}^{2}}\] which is the area of the equilateral triangle, an equilateral triangle is a triangle which divides the triangle into half each producing two right angle triangles hence, let us assume the value of the sides as \[x\].
\[\Rightarrow \dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}\times x\times x\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}{{x}^{2}}\]
Now to find the area of the triangle after the sides are increased is by \[2x\] and we place this value in the area of the triangle as:
\[\Rightarrow \dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}\times 2x\times 2x\]
\[\Rightarrow \sqrt{3}{{x}^{2}}\]
Hence, the area when the sides are doubled is given as\[\sqrt{3}{{x}^{2}}\]
Now to find the increase in the area from the original, we get the increase in area as:
Increased Area\[-\] Original Area\[=\] Difference in the Area
Placing the area in the above formula, we get the difference as:
\[\Rightarrow \sqrt{3}{{x}^{2}}-\dfrac{\sqrt{3}}{4}{{x}^{2}}=\dfrac{3\sqrt{3}}{4}{{x}^{2}}\]
Now forming a percentage for the increased value as:
\[\Rightarrow \dfrac{\dfrac{3\sqrt{3}}{4}{{x}^{2}}}{\dfrac{\sqrt{3}}{4}{{x}^{2}}}\times 100\]
\[\Rightarrow 300%\]
Note: Students may go wrong if they use any other triangle other than equilateral triangle such as scalene triangle, right angle triangle or isosceles triangle as the increase in area has to be equal from each side of the triangle therefore, we use the equilateral triangle.
Area of the triangle when all sides are same \[=\dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
The triangle is taken as an equilateral triangle as each side is doubled and for every side to increase equally all the sides are to be the same.
Complete step by step solution:
Let us assume the area of the triangle as \[=\dfrac{\sqrt{3}}{4}side{{s}^{2}}\] which is the area of the equilateral triangle, an equilateral triangle is a triangle which divides the triangle into half each producing two right angle triangles hence, let us assume the value of the sides as \[x\].
\[\Rightarrow \dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}\times x\times x\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}{{x}^{2}}\]
Now to find the area of the triangle after the sides are increased is by \[2x\] and we place this value in the area of the triangle as:
\[\Rightarrow \dfrac{\sqrt{3}}{4}side{{s}^{2}}\]
\[\Rightarrow \dfrac{\sqrt{3}}{4}\times 2x\times 2x\]
\[\Rightarrow \sqrt{3}{{x}^{2}}\]
Hence, the area when the sides are doubled is given as\[\sqrt{3}{{x}^{2}}\]
Now to find the increase in the area from the original, we get the increase in area as:
Increased Area\[-\] Original Area\[=\] Difference in the Area
Placing the area in the above formula, we get the difference as:
\[\Rightarrow \sqrt{3}{{x}^{2}}-\dfrac{\sqrt{3}}{4}{{x}^{2}}=\dfrac{3\sqrt{3}}{4}{{x}^{2}}\]
Now forming a percentage for the increased value as:
\[\Rightarrow \dfrac{\dfrac{3\sqrt{3}}{4}{{x}^{2}}}{\dfrac{\sqrt{3}}{4}{{x}^{2}}}\times 100\]
\[\Rightarrow 300%\]
Note: Students may go wrong if they use any other triangle other than equilateral triangle such as scalene triangle, right angle triangle or isosceles triangle as the increase in area has to be equal from each side of the triangle therefore, we use the equilateral triangle.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE