How do you find the other five trigonometric functions of x if $\cos x = \dfrac{3}{5}$.
Answer
Verified
439.8k+ views
Hint:n order to determine exact values of all six trigonometric function of the angle whose cosine is given to us in the above question, first assume the a right angled triangle and express all the trigonometric ratios with respect to and in terms of the sides of that triangle and then find all the trigonometric ratios knowing the lengths of hypotenuse, altitude and base.
Complete step by step solution:
We are given a point $\cos x = \dfrac{3}{5}$. Now we assume a right angled triangle ABC and let $\angle BAC = x$
Now, $\angle ACB = {90^ \circ }$.
So, $\cos x = \dfrac{{Base}}{{{\text{Hypotenuse}}}} = \dfrac{3}{5}$.
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 3x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, calculating opposite side of the triangle using Pythagoras theorem,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {3x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 9{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 16{x^2}$
$ \Rightarrow Altitude = 4x$
Therefore Calculating all the trigonometric ratios as:
\[\sin x = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\]
\[\tan x = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{4}{3}\]
\[\cot x = \dfrac{{{\text{Base}}}}{{{\text{Altitude}}}} = \dfrac{3}{4}\]
\[\cos ecx = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Altitude}}}} = \dfrac{5}{4}\]
\[\sec x = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Base}}}} = \dfrac{5}{3}\]
So, these are the values of trigonometric ratios except cosine which was given beforehand in the question itself.
Note: Trigonometry is one of the significant branches throughout the entire existence of mathematics and has wide ranging applications in various fields of mathematics such as Geometry, Algebra and Calculus. One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer. Trigonometric ratios are the ratios of the sides of a triangle and thus the trigonometric ratios can be found by expressing the ratios in the terms of the sides of a triangle.
Complete step by step solution:
We are given a point $\cos x = \dfrac{3}{5}$. Now we assume a right angled triangle ABC and let $\angle BAC = x$
Now, $\angle ACB = {90^ \circ }$.
So, $\cos x = \dfrac{{Base}}{{{\text{Hypotenuse}}}} = \dfrac{3}{5}$.
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 3x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, calculating opposite side of the triangle using Pythagoras theorem,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {3x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 9{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 16{x^2}$
$ \Rightarrow Altitude = 4x$
Therefore Calculating all the trigonometric ratios as:
\[\sin x = \dfrac{{{\text{Altitude}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\]
\[\tan x = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{4}{3}\]
\[\cot x = \dfrac{{{\text{Base}}}}{{{\text{Altitude}}}} = \dfrac{3}{4}\]
\[\cos ecx = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Altitude}}}} = \dfrac{5}{4}\]
\[\sec x = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Base}}}} = \dfrac{5}{3}\]
So, these are the values of trigonometric ratios except cosine which was given beforehand in the question itself.
Note: Trigonometry is one of the significant branches throughout the entire existence of mathematics and has wide ranging applications in various fields of mathematics such as Geometry, Algebra and Calculus. One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer. Trigonometric ratios are the ratios of the sides of a triangle and thus the trigonometric ratios can be found by expressing the ratios in the terms of the sides of a triangle.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE