# Find the number of that term of the A.P.: 21, 18, 15, ……… which is equal to zero.

Last updated date: 27th Mar 2023

•

Total views: 307.2k

•

Views today: 6.85k

Answer

Verified

307.2k+ views

Hint: For an arithmetic progression having it’s first term denoted by ‘a’, common difference denoted by ‘d’, the ${{r}^{th}}$ term of this arithmetic progression is given by the formula ${{a}_{r}}=a+\left( r-1 \right)d$. This formula can be used to solve this question if we find the first term and the common difference of the given A.P. and then substitute ${{a}_{r}}=0$ in the above formula.

Complete step-by-step answer:

Before proceeding with the question, we must know all the formulas that will be required to solve this question. For an arithmetic progression having its first term equal to a and common difference equal to d, the ${{r}^{th}}$ term of this A.P. is given by the formula,

${{a}_{r}}=a+\left( r-1 \right)d...............\left( 1 \right)$

Also, if we are given the first and the second term of the A.P., the common difference d of the A.P. can be found by subtracting the first term of the A.P. by it’s second term…….$\left( 2 \right)$

In the question, we are given an A.P. 21, 18, 15, ……… and we are required to find the number of the term which is equal to 0.

We can see that the first term of the A.P. i.e. $a$ is 21 and the second term of the A.P. is 18. So, using formula $\left( 2 \right)$, the common difference is given by,

d = 18 - 21 = -3

Let us assume ${{r}^{th}}$ term of this A.P. is equal to 0. Substituting ${{a}_{r}}=0,a=21$ and d = -3 in formula $\left( 1 \right)$, we get,

$\begin{align}

& 0=21+\left( r-1 \right)\left( -3 \right) \\

& \Rightarrow 3\left( r-1 \right)=21 \\

& \Rightarrow r-1=7 \\

& \Rightarrow r=8 \\

\end{align}$

Hence, the ${{8}^{th}}$ term of the A.P. is equal to 0.

Note: There is a possibility that one may commit a mistake while finding the common difference of the given arithmetic progression. There is a possibility that one may find the common difference of this arithmetic as +3 instead of -3. But since the common difference is found by subtracting ${{n}^{th}}$ term from ${{\left( n+1 \right)}^{th}}$ term, the common difference will be equal to -3 and not +3.

Complete step-by-step answer:

Before proceeding with the question, we must know all the formulas that will be required to solve this question. For an arithmetic progression having its first term equal to a and common difference equal to d, the ${{r}^{th}}$ term of this A.P. is given by the formula,

${{a}_{r}}=a+\left( r-1 \right)d...............\left( 1 \right)$

Also, if we are given the first and the second term of the A.P., the common difference d of the A.P. can be found by subtracting the first term of the A.P. by it’s second term…….$\left( 2 \right)$

In the question, we are given an A.P. 21, 18, 15, ……… and we are required to find the number of the term which is equal to 0.

We can see that the first term of the A.P. i.e. $a$ is 21 and the second term of the A.P. is 18. So, using formula $\left( 2 \right)$, the common difference is given by,

d = 18 - 21 = -3

Let us assume ${{r}^{th}}$ term of this A.P. is equal to 0. Substituting ${{a}_{r}}=0,a=21$ and d = -3 in formula $\left( 1 \right)$, we get,

$\begin{align}

& 0=21+\left( r-1 \right)\left( -3 \right) \\

& \Rightarrow 3\left( r-1 \right)=21 \\

& \Rightarrow r-1=7 \\

& \Rightarrow r=8 \\

\end{align}$

Hence, the ${{8}^{th}}$ term of the A.P. is equal to 0.

Note: There is a possibility that one may commit a mistake while finding the common difference of the given arithmetic progression. There is a possibility that one may find the common difference of this arithmetic as +3 instead of -3. But since the common difference is found by subtracting ${{n}^{th}}$ term from ${{\left( n+1 \right)}^{th}}$ term, the common difference will be equal to -3 and not +3.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE