
Find the number of that term of the A.P.: 21, 18, 15, ……… which is equal to zero.
Answer
602.1k+ views
Hint: For an arithmetic progression having it’s first term denoted by ‘a’, common difference denoted by ‘d’, the ${{r}^{th}}$ term of this arithmetic progression is given by the formula ${{a}_{r}}=a+\left( r-1 \right)d$. This formula can be used to solve this question if we find the first term and the common difference of the given A.P. and then substitute ${{a}_{r}}=0$ in the above formula.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question. For an arithmetic progression having its first term equal to a and common difference equal to d, the ${{r}^{th}}$ term of this A.P. is given by the formula,
${{a}_{r}}=a+\left( r-1 \right)d...............\left( 1 \right)$
Also, if we are given the first and the second term of the A.P., the common difference d of the A.P. can be found by subtracting the first term of the A.P. by it’s second term…….$\left( 2 \right)$
In the question, we are given an A.P. 21, 18, 15, ……… and we are required to find the number of the term which is equal to 0.
We can see that the first term of the A.P. i.e. $a$ is 21 and the second term of the A.P. is 18. So, using formula $\left( 2 \right)$, the common difference is given by,
d = 18 - 21 = -3
Let us assume ${{r}^{th}}$ term of this A.P. is equal to 0. Substituting ${{a}_{r}}=0,a=21$ and d = -3 in formula $\left( 1 \right)$, we get,
$\begin{align}
& 0=21+\left( r-1 \right)\left( -3 \right) \\
& \Rightarrow 3\left( r-1 \right)=21 \\
& \Rightarrow r-1=7 \\
& \Rightarrow r=8 \\
\end{align}$
Hence, the ${{8}^{th}}$ term of the A.P. is equal to 0.
Note: There is a possibility that one may commit a mistake while finding the common difference of the given arithmetic progression. There is a possibility that one may find the common difference of this arithmetic as +3 instead of -3. But since the common difference is found by subtracting ${{n}^{th}}$ term from ${{\left( n+1 \right)}^{th}}$ term, the common difference will be equal to -3 and not +3.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question. For an arithmetic progression having its first term equal to a and common difference equal to d, the ${{r}^{th}}$ term of this A.P. is given by the formula,
${{a}_{r}}=a+\left( r-1 \right)d...............\left( 1 \right)$
Also, if we are given the first and the second term of the A.P., the common difference d of the A.P. can be found by subtracting the first term of the A.P. by it’s second term…….$\left( 2 \right)$
In the question, we are given an A.P. 21, 18, 15, ……… and we are required to find the number of the term which is equal to 0.
We can see that the first term of the A.P. i.e. $a$ is 21 and the second term of the A.P. is 18. So, using formula $\left( 2 \right)$, the common difference is given by,
d = 18 - 21 = -3
Let us assume ${{r}^{th}}$ term of this A.P. is equal to 0. Substituting ${{a}_{r}}=0,a=21$ and d = -3 in formula $\left( 1 \right)$, we get,
$\begin{align}
& 0=21+\left( r-1 \right)\left( -3 \right) \\
& \Rightarrow 3\left( r-1 \right)=21 \\
& \Rightarrow r-1=7 \\
& \Rightarrow r=8 \\
\end{align}$
Hence, the ${{8}^{th}}$ term of the A.P. is equal to 0.
Note: There is a possibility that one may commit a mistake while finding the common difference of the given arithmetic progression. There is a possibility that one may find the common difference of this arithmetic as +3 instead of -3. But since the common difference is found by subtracting ${{n}^{th}}$ term from ${{\left( n+1 \right)}^{th}}$ term, the common difference will be equal to -3 and not +3.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

