Answer
Verified
491.1k+ views
Hint: For an arithmetic progression having it’s first term denoted by ‘a’, common difference denoted by ‘d’, the ${{r}^{th}}$ term of this arithmetic progression is given by the formula ${{a}_{r}}=a+\left( r-1 \right)d$. This formula can be used to solve this question if we find the first term and the common difference of the given A.P. and then substitute ${{a}_{r}}=0$ in the above formula.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question. For an arithmetic progression having its first term equal to a and common difference equal to d, the ${{r}^{th}}$ term of this A.P. is given by the formula,
${{a}_{r}}=a+\left( r-1 \right)d...............\left( 1 \right)$
Also, if we are given the first and the second term of the A.P., the common difference d of the A.P. can be found by subtracting the first term of the A.P. by it’s second term…….$\left( 2 \right)$
In the question, we are given an A.P. 21, 18, 15, ……… and we are required to find the number of the term which is equal to 0.
We can see that the first term of the A.P. i.e. $a$ is 21 and the second term of the A.P. is 18. So, using formula $\left( 2 \right)$, the common difference is given by,
d = 18 - 21 = -3
Let us assume ${{r}^{th}}$ term of this A.P. is equal to 0. Substituting ${{a}_{r}}=0,a=21$ and d = -3 in formula $\left( 1 \right)$, we get,
$\begin{align}
& 0=21+\left( r-1 \right)\left( -3 \right) \\
& \Rightarrow 3\left( r-1 \right)=21 \\
& \Rightarrow r-1=7 \\
& \Rightarrow r=8 \\
\end{align}$
Hence, the ${{8}^{th}}$ term of the A.P. is equal to 0.
Note: There is a possibility that one may commit a mistake while finding the common difference of the given arithmetic progression. There is a possibility that one may find the common difference of this arithmetic as +3 instead of -3. But since the common difference is found by subtracting ${{n}^{th}}$ term from ${{\left( n+1 \right)}^{th}}$ term, the common difference will be equal to -3 and not +3.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question. For an arithmetic progression having its first term equal to a and common difference equal to d, the ${{r}^{th}}$ term of this A.P. is given by the formula,
${{a}_{r}}=a+\left( r-1 \right)d...............\left( 1 \right)$
Also, if we are given the first and the second term of the A.P., the common difference d of the A.P. can be found by subtracting the first term of the A.P. by it’s second term…….$\left( 2 \right)$
In the question, we are given an A.P. 21, 18, 15, ……… and we are required to find the number of the term which is equal to 0.
We can see that the first term of the A.P. i.e. $a$ is 21 and the second term of the A.P. is 18. So, using formula $\left( 2 \right)$, the common difference is given by,
d = 18 - 21 = -3
Let us assume ${{r}^{th}}$ term of this A.P. is equal to 0. Substituting ${{a}_{r}}=0,a=21$ and d = -3 in formula $\left( 1 \right)$, we get,
$\begin{align}
& 0=21+\left( r-1 \right)\left( -3 \right) \\
& \Rightarrow 3\left( r-1 \right)=21 \\
& \Rightarrow r-1=7 \\
& \Rightarrow r=8 \\
\end{align}$
Hence, the ${{8}^{th}}$ term of the A.P. is equal to 0.
Note: There is a possibility that one may commit a mistake while finding the common difference of the given arithmetic progression. There is a possibility that one may find the common difference of this arithmetic as +3 instead of -3. But since the common difference is found by subtracting ${{n}^{th}}$ term from ${{\left( n+1 \right)}^{th}}$ term, the common difference will be equal to -3 and not +3.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths