
Find the number of solutions of the equation $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$.
A) $2$
B) $1$
C) $0$
D) $3$
Answer
473.4k+ views
Hint: The given equation is a second-degree equation in ${\sin ^{ - 1}}x$. To find what all values $x$ can take (and thus the number of solutions), first we need to check what all values ${\sin ^{ - 1}}x$ can take. This can be done by solving the quadratic equation by taking ${\sin ^{ - 1}}x = y$(say). Then we can eliminate any values which does not belong to the range of ${\sin ^{ - 1}}x$.
Formula used:
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given quadratic equation is $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$
We are asked to find the number of solutions.
Here the variable present is $x$. So, we need to find the number of values $x$ can take.
Let, ${\sin ^{ - 1}}x = y$
Then the equation becomes,
$\Rightarrow 2{y^2} - y - 6 = 0$, which is a quadratic equation in $y$.
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here the variable is $y$.
Also $a = 2,b = - 1,c = - 6$
$\Rightarrow y = \dfrac{{ - ( - 1) \pm \sqrt {{{( - 1)}^2} - 4 \times 2 \times - 6} }}{{2 \times 2}}$
Simplifying we get,
$ \Rightarrow y = \dfrac{{1 \pm \sqrt {1 + 48} }}{4} = \dfrac{{1 \pm \sqrt {49} }}{4}$
$ \Rightarrow y = \dfrac{{1 \pm 7}}{4}$
This gives $y = \dfrac{8}{4} = 2$ or $y = \dfrac{{ - 6}}{4} = \dfrac{{ - 3}}{2}$
Substituting for $y$ we get,
$\Rightarrow {\sin ^{ - 1}}x = 2{\text{ (or) }}{\sin ^{ - 1}}x = \dfrac{{ - 3}}{2}$
But ${\sin ^{ - 1}}x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2})$, which is the open interval with limits $ - \dfrac{\pi }{2},\dfrac{\pi }{2}$.
Here $\pi $ is in radians, which can be approximated to $3.14$.
This gives
$\Rightarrow \dfrac{\pi }{2} = \dfrac{{3.14}}{2} = 1.57$
So ${\sin ^{ - 1}}x$ cannot take the value $2$, since the value must be less than $1.57$.
Therefore ${\sin ^{ - 1}}x = \dfrac{{ - 3}}{2} \Rightarrow x = \sin (\dfrac{{ - 3}}{2})$, which is the only solution.
This gives the number of solutions is $1$.
$\therefore $ The correct answer is option B.
Note:
The alternative method to solve the quadratic equation without this formula.
$2{y^2} - y - 6 = 0$
By simple rearrangement we get,
$ \Rightarrow 2{y^2} - 4y + 3y - 6 = 0$
Taking common factors from first two terms and last two terms,
$ \Rightarrow 2y(y - 2) + 3(y - 2) = 0$
$ \Rightarrow (y - 2)(2y + 3) = 0$
The product of two terms is zero implies either one is zero.
$ \Rightarrow (y - 2) = 0{\text{ (or) }}(2y + 3) = 0$
$ \Rightarrow y = 2\left( {{\text{or}}} \right) = \dfrac{{ - 3}}{2}$
Formula used:
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given quadratic equation is $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$
We are asked to find the number of solutions.
Here the variable present is $x$. So, we need to find the number of values $x$ can take.
Let, ${\sin ^{ - 1}}x = y$
Then the equation becomes,
$\Rightarrow 2{y^2} - y - 6 = 0$, which is a quadratic equation in $y$.
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here the variable is $y$.
Also $a = 2,b = - 1,c = - 6$
$\Rightarrow y = \dfrac{{ - ( - 1) \pm \sqrt {{{( - 1)}^2} - 4 \times 2 \times - 6} }}{{2 \times 2}}$
Simplifying we get,
$ \Rightarrow y = \dfrac{{1 \pm \sqrt {1 + 48} }}{4} = \dfrac{{1 \pm \sqrt {49} }}{4}$
$ \Rightarrow y = \dfrac{{1 \pm 7}}{4}$
This gives $y = \dfrac{8}{4} = 2$ or $y = \dfrac{{ - 6}}{4} = \dfrac{{ - 3}}{2}$
Substituting for $y$ we get,
$\Rightarrow {\sin ^{ - 1}}x = 2{\text{ (or) }}{\sin ^{ - 1}}x = \dfrac{{ - 3}}{2}$
But ${\sin ^{ - 1}}x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2})$, which is the open interval with limits $ - \dfrac{\pi }{2},\dfrac{\pi }{2}$.
Here $\pi $ is in radians, which can be approximated to $3.14$.
This gives
$\Rightarrow \dfrac{\pi }{2} = \dfrac{{3.14}}{2} = 1.57$
So ${\sin ^{ - 1}}x$ cannot take the value $2$, since the value must be less than $1.57$.
Therefore ${\sin ^{ - 1}}x = \dfrac{{ - 3}}{2} \Rightarrow x = \sin (\dfrac{{ - 3}}{2})$, which is the only solution.
This gives the number of solutions is $1$.
$\therefore $ The correct answer is option B.
Note:
The alternative method to solve the quadratic equation without this formula.
$2{y^2} - y - 6 = 0$
By simple rearrangement we get,
$ \Rightarrow 2{y^2} - 4y + 3y - 6 = 0$
Taking common factors from first two terms and last two terms,
$ \Rightarrow 2y(y - 2) + 3(y - 2) = 0$
$ \Rightarrow (y - 2)(2y + 3) = 0$
The product of two terms is zero implies either one is zero.
$ \Rightarrow (y - 2) = 0{\text{ (or) }}(2y + 3) = 0$
$ \Rightarrow y = 2\left( {{\text{or}}} \right) = \dfrac{{ - 3}}{2}$
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
