Answer
Verified
454.5k+ views
Hint: The given equation is a second-degree equation in ${\sin ^{ - 1}}x$. To find what all values $x$ can take (and thus the number of solutions), first we need to check what all values ${\sin ^{ - 1}}x$ can take. This can be done by solving the quadratic equation by taking ${\sin ^{ - 1}}x = y$(say). Then we can eliminate any values which does not belong to the range of ${\sin ^{ - 1}}x$.
Formula used:
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given quadratic equation is $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$
We are asked to find the number of solutions.
Here the variable present is $x$. So, we need to find the number of values $x$ can take.
Let, ${\sin ^{ - 1}}x = y$
Then the equation becomes,
$\Rightarrow 2{y^2} - y - 6 = 0$, which is a quadratic equation in $y$.
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here the variable is $y$.
Also $a = 2,b = - 1,c = - 6$
$\Rightarrow y = \dfrac{{ - ( - 1) \pm \sqrt {{{( - 1)}^2} - 4 \times 2 \times - 6} }}{{2 \times 2}}$
Simplifying we get,
$ \Rightarrow y = \dfrac{{1 \pm \sqrt {1 + 48} }}{4} = \dfrac{{1 \pm \sqrt {49} }}{4}$
$ \Rightarrow y = \dfrac{{1 \pm 7}}{4}$
This gives $y = \dfrac{8}{4} = 2$ or $y = \dfrac{{ - 6}}{4} = \dfrac{{ - 3}}{2}$
Substituting for $y$ we get,
$\Rightarrow {\sin ^{ - 1}}x = 2{\text{ (or) }}{\sin ^{ - 1}}x = \dfrac{{ - 3}}{2}$
But ${\sin ^{ - 1}}x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2})$, which is the open interval with limits $ - \dfrac{\pi }{2},\dfrac{\pi }{2}$.
Here $\pi $ is in radians, which can be approximated to $3.14$.
This gives
$\Rightarrow \dfrac{\pi }{2} = \dfrac{{3.14}}{2} = 1.57$
So ${\sin ^{ - 1}}x$ cannot take the value $2$, since the value must be less than $1.57$.
Therefore ${\sin ^{ - 1}}x = \dfrac{{ - 3}}{2} \Rightarrow x = \sin (\dfrac{{ - 3}}{2})$, which is the only solution.
This gives the number of solutions is $1$.
$\therefore $ The correct answer is option B.
Note:
The alternative method to solve the quadratic equation without this formula.
$2{y^2} - y - 6 = 0$
By simple rearrangement we get,
$ \Rightarrow 2{y^2} - 4y + 3y - 6 = 0$
Taking common factors from first two terms and last two terms,
$ \Rightarrow 2y(y - 2) + 3(y - 2) = 0$
$ \Rightarrow (y - 2)(2y + 3) = 0$
The product of two terms is zero implies either one is zero.
$ \Rightarrow (y - 2) = 0{\text{ (or) }}(2y + 3) = 0$
$ \Rightarrow y = 2\left( {{\text{or}}} \right) = \dfrac{{ - 3}}{2}$
Formula used:
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step by step answer:
The given quadratic equation is $2{({\sin ^{ - 1}}x)^2} - {\sin ^{ - 1}}x - 6 = 0$
We are asked to find the number of solutions.
Here the variable present is $x$. So, we need to find the number of values $x$ can take.
Let, ${\sin ^{ - 1}}x = y$
Then the equation becomes,
$\Rightarrow 2{y^2} - y - 6 = 0$, which is a quadratic equation in $y$.
A second-degree equation of the form $a{x^2} + bx + c = 0$ can be solved by
$\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here the variable is $y$.
Also $a = 2,b = - 1,c = - 6$
$\Rightarrow y = \dfrac{{ - ( - 1) \pm \sqrt {{{( - 1)}^2} - 4 \times 2 \times - 6} }}{{2 \times 2}}$
Simplifying we get,
$ \Rightarrow y = \dfrac{{1 \pm \sqrt {1 + 48} }}{4} = \dfrac{{1 \pm \sqrt {49} }}{4}$
$ \Rightarrow y = \dfrac{{1 \pm 7}}{4}$
This gives $y = \dfrac{8}{4} = 2$ or $y = \dfrac{{ - 6}}{4} = \dfrac{{ - 3}}{2}$
Substituting for $y$ we get,
$\Rightarrow {\sin ^{ - 1}}x = 2{\text{ (or) }}{\sin ^{ - 1}}x = \dfrac{{ - 3}}{2}$
But ${\sin ^{ - 1}}x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2})$, which is the open interval with limits $ - \dfrac{\pi }{2},\dfrac{\pi }{2}$.
Here $\pi $ is in radians, which can be approximated to $3.14$.
This gives
$\Rightarrow \dfrac{\pi }{2} = \dfrac{{3.14}}{2} = 1.57$
So ${\sin ^{ - 1}}x$ cannot take the value $2$, since the value must be less than $1.57$.
Therefore ${\sin ^{ - 1}}x = \dfrac{{ - 3}}{2} \Rightarrow x = \sin (\dfrac{{ - 3}}{2})$, which is the only solution.
This gives the number of solutions is $1$.
$\therefore $ The correct answer is option B.
Note:
The alternative method to solve the quadratic equation without this formula.
$2{y^2} - y - 6 = 0$
By simple rearrangement we get,
$ \Rightarrow 2{y^2} - 4y + 3y - 6 = 0$
Taking common factors from first two terms and last two terms,
$ \Rightarrow 2y(y - 2) + 3(y - 2) = 0$
$ \Rightarrow (y - 2)(2y + 3) = 0$
The product of two terms is zero implies either one is zero.
$ \Rightarrow (y - 2) = 0{\text{ (or) }}(2y + 3) = 0$
$ \Rightarrow y = 2\left( {{\text{or}}} \right) = \dfrac{{ - 3}}{2}$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE