Find the number of points with integral coordinates that lie in the interior of the region common to circle $${x^2} + {y^2} = 16$$ and the parabola ${y^2} = 4x.$
A.8
B.10
C.16
D.None of these
Answer
Verified
506.1k+ views
Hint: We need to imagine the graphs of circle and parabola and the intersection of those two figures in a graph.
Let $\left( {\alpha ,\beta } \right)$ be the point with integral coordinates and lying in the interior of the region common to the circle ${x^2} + {y^2} = 16$ and the parabola ${y^2} = 4x.$
Then ${\alpha ^2} + {\beta ^2} - 16 < 0$ and ${\beta ^2} - 4\alpha < 0$
It is clear from the figure that $0 < \alpha < 4$ .
$ \Rightarrow \alpha = 1,2,3$ $\left[ {\because \alpha \in Z} \right]$
When $\alpha = 1$
${\beta ^2} < 4\alpha $
$ \Rightarrow {\beta ^2} < 4$
$ \Rightarrow \beta = 0,1$
So the points are (1, 0) and (1, 1).
When $\alpha = 2$
${\beta ^2} < 4\alpha $
$ \Rightarrow {\beta ^2} < 8$
$ \Rightarrow \beta = 0,1,2$
So the points are (2, 0), (2, 1) and (2, 2).
When $\alpha = 3$
${\beta ^2} < 4\alpha $
$ \Rightarrow {\beta ^2} < 12$
$ \Rightarrow \beta = 0,1,2,3$
So the points are (3, 0), (3, 1), (3, 2) and (3, 3)
Out of these four points (3, 3) does not satisfy ${\alpha ^2} + {\beta ^2} - 16 < 0$.
Thus, the points lying in the region are (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1) and (3, 2).
Note:
It is always better to start with the graph of given equations for these kinds of problems for better visualization.
Let $\left( {\alpha ,\beta } \right)$ be the point with integral coordinates and lying in the interior of the region common to the circle ${x^2} + {y^2} = 16$ and the parabola ${y^2} = 4x.$
Then ${\alpha ^2} + {\beta ^2} - 16 < 0$ and ${\beta ^2} - 4\alpha < 0$
It is clear from the figure that $0 < \alpha < 4$ .
$ \Rightarrow \alpha = 1,2,3$ $\left[ {\because \alpha \in Z} \right]$
When $\alpha = 1$
${\beta ^2} < 4\alpha $
$ \Rightarrow {\beta ^2} < 4$
$ \Rightarrow \beta = 0,1$
So the points are (1, 0) and (1, 1).
When $\alpha = 2$
${\beta ^2} < 4\alpha $
$ \Rightarrow {\beta ^2} < 8$
$ \Rightarrow \beta = 0,1,2$
So the points are (2, 0), (2, 1) and (2, 2).
When $\alpha = 3$
${\beta ^2} < 4\alpha $
$ \Rightarrow {\beta ^2} < 12$
$ \Rightarrow \beta = 0,1,2,3$
So the points are (3, 0), (3, 1), (3, 2) and (3, 3)
Out of these four points (3, 3) does not satisfy ${\alpha ^2} + {\beta ^2} - 16 < 0$.
Thus, the points lying in the region are (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1) and (3, 2).
Note:
It is always better to start with the graph of given equations for these kinds of problems for better visualization.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE