
Find the ${{n}^{th}}$ term of the series $1+3+7+13+21+......$ and hence find the sum of first n terms?
Answer
507.9k+ views
Hint: We first try to find the ${{n}^{th}}$ term of the series using the subtraction form of the terms. In that case, we subtract shifting one term on the right side. We find the term form in general and then using the formulas of \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\] we find sum.
Complete step by step solution:
We have been given $1+3+7+13+21+......$. This is AGM progression.
We assume its ${{n}^{th}}$ term as ${{t}_{n}}$. So, $1+3+7+13+21+......+{{t}_{n}}$
We assume the sum as $S=1+3+7+13+21+......+{{t}_{n}}$.
We apply one particular trick to subtract S from S in a particular way taking crosswise subtraction as
$\begin{align}
& S=1+3+7+13+21+......+{{t}_{n}} \\
& \underline{S=1+3+7+13+21+......+{{t}_{n}}} \\
& 0=1+\left( 3-1 \right)+\left( 7-3 \right)+\left( 13-7 \right)+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)-{{t}_{n}} \\
\end{align}$
The series has $n$ terms. The simplified form is $1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)-{{t}_{n}}=0$.
So, ${{t}_{n}}=1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)$ and it has n terms. This series is an AP.
We use the known summation forms like \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\].
The sum will be ${{t}_{n}}=1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)=1+\sum\limits_{r=1}^{n-1}{2r}=1+n\left( n-1 \right)$.
The terms will be in the form of ${{t}_{n}}=1+n\left( n-1 \right)={{n}^{2}}-n+1$ putting values $n=1,2,3...$
So, we get \[S=1+3+7+13+21+......+{{t}_{n}}=\sum{{{n}^{2}}-n+1}=\sum\limits_{k=1}^{n}{{{k}^{2}}-k+1}\]
The summation gives us \[S=\sum\limits_{k=1}^{n}{{{k}^{2}}-k+1}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{n\left( n+1 \right)}{2}+n\].
Now we need to simplify the summation and get
\[\begin{align}
& \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{n\left( n+1 \right)}{2}+n \\
& =\dfrac{n\left( n+1 \right)\left( 2n+1-3 \right)}{6}+n \\
& =\dfrac{n\left( {{n}^{2}}-1 \right)}{3}+n \\
& =\dfrac{n}{3}\left( {{n}^{2}}+2 \right) \\
\end{align}\]
Therefore, the ${{n}^{th}}$ term of the series $1+3+7+13+21+......$ is ${{t}_{n}}={{n}^{2}}-n+1$ and the sum of first n terms is \[\dfrac{n}{3}\left( {{n}^{2}}+2 \right)\].
Note:
This special form of subtraction is done to get the ${{t}_{n}}$ in negative form with the number of terms in that subtraction being equal to the number of terms in the main series. The summation forms of \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\] comes from that too.
Complete step by step solution:
We have been given $1+3+7+13+21+......$. This is AGM progression.
We assume its ${{n}^{th}}$ term as ${{t}_{n}}$. So, $1+3+7+13+21+......+{{t}_{n}}$
We assume the sum as $S=1+3+7+13+21+......+{{t}_{n}}$.
We apply one particular trick to subtract S from S in a particular way taking crosswise subtraction as
$\begin{align}
& S=1+3+7+13+21+......+{{t}_{n}} \\
& \underline{S=1+3+7+13+21+......+{{t}_{n}}} \\
& 0=1+\left( 3-1 \right)+\left( 7-3 \right)+\left( 13-7 \right)+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)-{{t}_{n}} \\
\end{align}$
The series has $n$ terms. The simplified form is $1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)-{{t}_{n}}=0$.
So, ${{t}_{n}}=1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)$ and it has n terms. This series is an AP.
We use the known summation forms like \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\].
The sum will be ${{t}_{n}}=1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)=1+\sum\limits_{r=1}^{n-1}{2r}=1+n\left( n-1 \right)$.
The terms will be in the form of ${{t}_{n}}=1+n\left( n-1 \right)={{n}^{2}}-n+1$ putting values $n=1,2,3...$
So, we get \[S=1+3+7+13+21+......+{{t}_{n}}=\sum{{{n}^{2}}-n+1}=\sum\limits_{k=1}^{n}{{{k}^{2}}-k+1}\]
The summation gives us \[S=\sum\limits_{k=1}^{n}{{{k}^{2}}-k+1}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{n\left( n+1 \right)}{2}+n\].
Now we need to simplify the summation and get
\[\begin{align}
& \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{n\left( n+1 \right)}{2}+n \\
& =\dfrac{n\left( n+1 \right)\left( 2n+1-3 \right)}{6}+n \\
& =\dfrac{n\left( {{n}^{2}}-1 \right)}{3}+n \\
& =\dfrac{n}{3}\left( {{n}^{2}}+2 \right) \\
\end{align}\]
Therefore, the ${{n}^{th}}$ term of the series $1+3+7+13+21+......$ is ${{t}_{n}}={{n}^{2}}-n+1$ and the sum of first n terms is \[\dfrac{n}{3}\left( {{n}^{2}}+2 \right)\].
Note:
This special form of subtraction is done to get the ${{t}_{n}}$ in negative form with the number of terms in that subtraction being equal to the number of terms in the main series. The summation forms of \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\] comes from that too.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

