
Find the next number in the series: 499, 622, 868, 1237, 1729, 2344.
(a) 3205
(b) 3082
(c) 2959
(d) 3462
(e) 2876
Answer
606.3k+ views
Hint: Try to determine the relationship between the numbers in the series and then determine the next number in the series.
Complete step-by-step answer:
Let us find the difference between the consecutive numbers in the series.
622 – 499 = 123
868 – 622 = 246
1237 – 868 = 369
1729 – 1237 = 492
2344 – 1729 = 615
We get the differences as 123, 246, 369, 492 and 615.
We now try to identify some special relation between the differences.
The differences can be expressed as follows:
123 = 1 × 123
246 = 2 × 123
369 = 3 × 123
492 = 4 × 123
615 = 5 × 123
Hence, they all follow a particular pattern of adding a multiple of 123 to the previous term in the series.
By using this relation, we can easily determine the next term in the series.
The next term can be obtained by adding 6 × 123 to the previous term, that is, 2344.
We know that 6 × 123 is equal to 738. Hence, the next term in the series is:
2344 + 738 = 3082
Therefore, the next term in the series is 3082.
Hence, the correct answer is option (b).
Note: You just have to use trial and error method using the arithmetic operations until you find the relation between the terms in the series. While solving such numerical ability questions, we have to address only what is relevant to the given question.
Complete step-by-step answer:
Let us find the difference between the consecutive numbers in the series.
622 – 499 = 123
868 – 622 = 246
1237 – 868 = 369
1729 – 1237 = 492
2344 – 1729 = 615
We get the differences as 123, 246, 369, 492 and 615.
We now try to identify some special relation between the differences.
The differences can be expressed as follows:
123 = 1 × 123
246 = 2 × 123
369 = 3 × 123
492 = 4 × 123
615 = 5 × 123
Hence, they all follow a particular pattern of adding a multiple of 123 to the previous term in the series.
By using this relation, we can easily determine the next term in the series.
The next term can be obtained by adding 6 × 123 to the previous term, that is, 2344.
We know that 6 × 123 is equal to 738. Hence, the next term in the series is:
2344 + 738 = 3082
Therefore, the next term in the series is 3082.
Hence, the correct answer is option (b).
Note: You just have to use trial and error method using the arithmetic operations until you find the relation between the terms in the series. While solving such numerical ability questions, we have to address only what is relevant to the given question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

