
Find the multiplicative inverse of the complex numbers \[z = 4 - 3i\].
Answer
623.7k+ views
Hint- The multiplicative inverse of complex number \[z = 4 - 3i\] is given by \[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}}\].
Multiplicative Inverse of a non-zero complex number $z$ is an element denoted by ${z^{ - 1}}$ such that $z{z^{ - 1}} = 1$.
Method 1.
Now according to the question Let \[z = 4 - 3i\]and we know that multiplicative inverse is given as
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}}\]
And conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term i.e. the conjugate of $z = $\[4 + 3i\]
Where \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
So,
\[
\Rightarrow {\left| z \right|^2} = {4^2} + {\left( { - 3} \right)^2} \\
\Rightarrow {\left| z \right|^2} = 16 + 9 \\
\Rightarrow {\left| z \right|^2} = 25 \\
\]
Therefore, the multiplicative inverse of \[4 - 3i\] is
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}} = \dfrac{{4 + 3i}}{{25}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\]
Method 2.
Let the multiplicative inverse of \[z = 4 - 3i\] is $x$
Then $x = \dfrac{1}{{4 - 3i}}$
Now Rationalize the denominator as
$x = \dfrac{1}{{4 - 3i}} \times \dfrac{{4 + 3i}}{{4 + 3i}}$
Using $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, then
$x = \dfrac{{4 + 3i}}{{{4^2} - {{\left( {3i} \right)}^2}}} = \dfrac{{4 + 3i}}{{16 + 9}}$
$x = \dfrac{{4 + 3i}}{{25}}$
the multiplicative inverse of \[4 - 3i\] is \[\dfrac{{4 + 3i}}{{25}}\].
Note- A Complex number in rectangular form is represented by \[z = a + ib\]. where $a$ is real part and $b$ is the imaginary part in an argand plane. conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term. \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
Multiplicative Inverse of a non-zero complex number $z$ is an element denoted by ${z^{ - 1}}$ such that $z{z^{ - 1}} = 1$.
Method 1.
Now according to the question Let \[z = 4 - 3i\]and we know that multiplicative inverse is given as
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}}\]
And conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term i.e. the conjugate of $z = $\[4 + 3i\]
Where \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
So,
\[
\Rightarrow {\left| z \right|^2} = {4^2} + {\left( { - 3} \right)^2} \\
\Rightarrow {\left| z \right|^2} = 16 + 9 \\
\Rightarrow {\left| z \right|^2} = 25 \\
\]
Therefore, the multiplicative inverse of \[4 - 3i\] is
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}} = \dfrac{{4 + 3i}}{{25}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\]
Method 2.
Let the multiplicative inverse of \[z = 4 - 3i\] is $x$
Then $x = \dfrac{1}{{4 - 3i}}$
Now Rationalize the denominator as
$x = \dfrac{1}{{4 - 3i}} \times \dfrac{{4 + 3i}}{{4 + 3i}}$
Using $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, then
$x = \dfrac{{4 + 3i}}{{{4^2} - {{\left( {3i} \right)}^2}}} = \dfrac{{4 + 3i}}{{16 + 9}}$
$x = \dfrac{{4 + 3i}}{{25}}$
the multiplicative inverse of \[4 - 3i\] is \[\dfrac{{4 + 3i}}{{25}}\].
Note- A Complex number in rectangular form is represented by \[z = a + ib\]. where $a$ is real part and $b$ is the imaginary part in an argand plane. conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term. \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

