
Find the multiplicative inverse of the complex numbers \[z = 4 - 3i\].
Answer
517.2k+ views
Hint- The multiplicative inverse of complex number \[z = 4 - 3i\] is given by \[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}}\].
Multiplicative Inverse of a non-zero complex number $z$ is an element denoted by ${z^{ - 1}}$ such that $z{z^{ - 1}} = 1$.
Method 1.
Now according to the question Let \[z = 4 - 3i\]and we know that multiplicative inverse is given as
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}}\]
And conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term i.e. the conjugate of $z = $\[4 + 3i\]
Where \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
So,
\[
\Rightarrow {\left| z \right|^2} = {4^2} + {\left( { - 3} \right)^2} \\
\Rightarrow {\left| z \right|^2} = 16 + 9 \\
\Rightarrow {\left| z \right|^2} = 25 \\
\]
Therefore, the multiplicative inverse of \[4 - 3i\] is
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}} = \dfrac{{4 + 3i}}{{25}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\]
Method 2.
Let the multiplicative inverse of \[z = 4 - 3i\] is $x$
Then $x = \dfrac{1}{{4 - 3i}}$
Now Rationalize the denominator as
$x = \dfrac{1}{{4 - 3i}} \times \dfrac{{4 + 3i}}{{4 + 3i}}$
Using $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, then
$x = \dfrac{{4 + 3i}}{{{4^2} - {{\left( {3i} \right)}^2}}} = \dfrac{{4 + 3i}}{{16 + 9}}$
$x = \dfrac{{4 + 3i}}{{25}}$
the multiplicative inverse of \[4 - 3i\] is \[\dfrac{{4 + 3i}}{{25}}\].
Note- A Complex number in rectangular form is represented by \[z = a + ib\]. where $a$ is real part and $b$ is the imaginary part in an argand plane. conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term. \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
Multiplicative Inverse of a non-zero complex number $z$ is an element denoted by ${z^{ - 1}}$ such that $z{z^{ - 1}} = 1$.
Method 1.
Now according to the question Let \[z = 4 - 3i\]and we know that multiplicative inverse is given as
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}}\]
And conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term i.e. the conjugate of $z = $\[4 + 3i\]
Where \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
So,
\[
\Rightarrow {\left| z \right|^2} = {4^2} + {\left( { - 3} \right)^2} \\
\Rightarrow {\left| z \right|^2} = 16 + 9 \\
\Rightarrow {\left| z \right|^2} = 25 \\
\]
Therefore, the multiplicative inverse of \[4 - 3i\] is
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}} = \dfrac{{4 + 3i}}{{25}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\]
Method 2.
Let the multiplicative inverse of \[z = 4 - 3i\] is $x$
Then $x = \dfrac{1}{{4 - 3i}}$
Now Rationalize the denominator as
$x = \dfrac{1}{{4 - 3i}} \times \dfrac{{4 + 3i}}{{4 + 3i}}$
Using $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, then
$x = \dfrac{{4 + 3i}}{{{4^2} - {{\left( {3i} \right)}^2}}} = \dfrac{{4 + 3i}}{{16 + 9}}$
$x = \dfrac{{4 + 3i}}{{25}}$
the multiplicative inverse of \[4 - 3i\] is \[\dfrac{{4 + 3i}}{{25}}\].
Note- A Complex number in rectangular form is represented by \[z = a + ib\]. where $a$ is real part and $b$ is the imaginary part in an argand plane. conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term. \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
