
Find the multiplicative inverse of the complex numbers \[z = 4 - 3i\].
Answer
609k+ views
Hint- The multiplicative inverse of complex number \[z = 4 - 3i\] is given by \[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}}\].
Multiplicative Inverse of a non-zero complex number $z$ is an element denoted by ${z^{ - 1}}$ such that $z{z^{ - 1}} = 1$.
Method 1.
Now according to the question Let \[z = 4 - 3i\]and we know that multiplicative inverse is given as
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}}\]
And conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term i.e. the conjugate of $z = $\[4 + 3i\]
Where \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
So,
\[
\Rightarrow {\left| z \right|^2} = {4^2} + {\left( { - 3} \right)^2} \\
\Rightarrow {\left| z \right|^2} = 16 + 9 \\
\Rightarrow {\left| z \right|^2} = 25 \\
\]
Therefore, the multiplicative inverse of \[4 - 3i\] is
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}} = \dfrac{{4 + 3i}}{{25}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\]
Method 2.
Let the multiplicative inverse of \[z = 4 - 3i\] is $x$
Then $x = \dfrac{1}{{4 - 3i}}$
Now Rationalize the denominator as
$x = \dfrac{1}{{4 - 3i}} \times \dfrac{{4 + 3i}}{{4 + 3i}}$
Using $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, then
$x = \dfrac{{4 + 3i}}{{{4^2} - {{\left( {3i} \right)}^2}}} = \dfrac{{4 + 3i}}{{16 + 9}}$
$x = \dfrac{{4 + 3i}}{{25}}$
the multiplicative inverse of \[4 - 3i\] is \[\dfrac{{4 + 3i}}{{25}}\].
Note- A Complex number in rectangular form is represented by \[z = a + ib\]. where $a$ is real part and $b$ is the imaginary part in an argand plane. conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term. \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
Multiplicative Inverse of a non-zero complex number $z$ is an element denoted by ${z^{ - 1}}$ such that $z{z^{ - 1}} = 1$.
Method 1.
Now according to the question Let \[z = 4 - 3i\]and we know that multiplicative inverse is given as
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}}\]
And conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term i.e. the conjugate of $z = $\[4 + 3i\]
Where \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
So,
\[
\Rightarrow {\left| z \right|^2} = {4^2} + {\left( { - 3} \right)^2} \\
\Rightarrow {\left| z \right|^2} = 16 + 9 \\
\Rightarrow {\left| z \right|^2} = 25 \\
\]
Therefore, the multiplicative inverse of \[4 - 3i\] is
\[{z^{ - 1}} = \dfrac{{{\text{conjugate of z}}}}{{{{\left| z \right|}^{^2}}}} = \dfrac{{4 + 3i}}{{25}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\]
Method 2.
Let the multiplicative inverse of \[z = 4 - 3i\] is $x$
Then $x = \dfrac{1}{{4 - 3i}}$
Now Rationalize the denominator as
$x = \dfrac{1}{{4 - 3i}} \times \dfrac{{4 + 3i}}{{4 + 3i}}$
Using $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, then
$x = \dfrac{{4 + 3i}}{{{4^2} - {{\left( {3i} \right)}^2}}} = \dfrac{{4 + 3i}}{{16 + 9}}$
$x = \dfrac{{4 + 3i}}{{25}}$
the multiplicative inverse of \[4 - 3i\] is \[\dfrac{{4 + 3i}}{{25}}\].
Note- A Complex number in rectangular form is represented by \[z = a + ib\]. where $a$ is real part and $b$ is the imaginary part in an argand plane. conjugate of \[z = 4 - 3i\] is nothing but changing the sign of $i$ term. \[\left| z \right|\] indicates the magnitude of complex number \[z = 4 - 3i\] given as \[\left| z \right| = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}} \]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

