
Find the modulus and the argument of the complex number$z = - 1 - i\sqrt 3 $.
Answer
614.7k+ views
Hint-These types of questions can be solved by using the formula of modulus and argument of
the complex number.
Given complex number is
$z = - 1 - i\sqrt 3 $
Now we know that the general form of complex number is
$z = x + iy$
Now comparing the above two we get,
$x = - 1$ and ${\text{ }}y = - \sqrt 3 $
Now let’s find the modulus of the complex number.
We know that the modulus of a complex number is $\left| z \right|$
$\left| z \right| = \sqrt {{x^2} + {y^2}} $
Now putting the value of $x$ and $y$ we get,
$
\left| z \right| = \sqrt {{{( - 1)}^2} + {{( - \sqrt 3 )}^2}} \\
\left| z \right| = \sqrt {1 + 3} \\
\left| z \right| = \sqrt 4 \\
\left| z \right| = 2 \\
$
Therefore, the modulus of a given complex number is $2$.
Now let’s find the argument of the complex number.
Now we know that the general form of complex number is
$z = x + iy$
Let $x$ be $r\cos \theta $ and$y$ be $r\sin \theta $ where $r$ is the modulus of the complex number.
Now putting the values of $x$ and $y$ in $z$ we get,
$z = r\cos \theta + ir\sin \theta $
Now comparing the above two we get,
$ - 1 - i\sqrt 3 {\text{ }} = r\cos \theta + ir\sin \theta $
Now, comparing the real parts we get,
${\text{ - 1 = }}r\cos \theta $
Now, putting the value of $r$ in the above equation we get,
$
{\text{ - 1 = 2}}\cos \theta \\
{\text{or }}\cos \theta = \dfrac{{ - 1}}{2}{\text{ }} \\
$
Similarly, compare the imaginary parts and put the value of $r$ we get,
$
- \sqrt 3 = 2\sin \theta \\
{\text{or }}\sin \theta = - \dfrac{{\sqrt 3 }}{2} \\
$
Hence, $\sin \theta = - \dfrac{{\sqrt 3 }}{2}{\text{ and }}\cos \theta = \dfrac{{ - 1}}{2}{\text{ }}$
or$\theta {\text{ = }}{60^ \circ }$
Now we can clearly see that the values of both $\sin \theta $ and$\cos \theta $ are negative.
And we know that they both are negative in ${3^{rd}}$ quadrant.
Therefore, the argument is in ${3^{rd}}$ quadrant.
Argument${\text{ = - (18}}{0^ \circ } - \theta {\text{)}}$
$
{\text{ = - (18}}{0^ \circ } - \theta {\text{)}} \\
= {\text{ - (18}}{0^ \circ } - {60^ \circ }{\text{)}} \\
{\text{ = - (12}}{{\text{0}}^ \circ }{\text{)}} \\
{\text{ = - 12}}{0^ \circ } \\
$
Now converting it in $\pi $ form we get,
$
= - {120^ \circ } \times \dfrac{\pi }{{{{180}^ \circ }}} \\
= - \dfrac{{2\pi }}{3} \\
$
Hence, the argument of complex number is $ - \dfrac{{2\pi }}{3}$
Note- Whenever we face such types of questions the key concept is that we simply compare the given
complex number with its general form and then find the value of $x$ and $y$ and put it in the formula
of modulus and argument of the complex number
the complex number.
Given complex number is
$z = - 1 - i\sqrt 3 $
Now we know that the general form of complex number is
$z = x + iy$
Now comparing the above two we get,
$x = - 1$ and ${\text{ }}y = - \sqrt 3 $
Now let’s find the modulus of the complex number.
We know that the modulus of a complex number is $\left| z \right|$
$\left| z \right| = \sqrt {{x^2} + {y^2}} $
Now putting the value of $x$ and $y$ we get,
$
\left| z \right| = \sqrt {{{( - 1)}^2} + {{( - \sqrt 3 )}^2}} \\
\left| z \right| = \sqrt {1 + 3} \\
\left| z \right| = \sqrt 4 \\
\left| z \right| = 2 \\
$
Therefore, the modulus of a given complex number is $2$.
Now let’s find the argument of the complex number.
Now we know that the general form of complex number is
$z = x + iy$
Let $x$ be $r\cos \theta $ and$y$ be $r\sin \theta $ where $r$ is the modulus of the complex number.
Now putting the values of $x$ and $y$ in $z$ we get,
$z = r\cos \theta + ir\sin \theta $
Now comparing the above two we get,
$ - 1 - i\sqrt 3 {\text{ }} = r\cos \theta + ir\sin \theta $
Now, comparing the real parts we get,
${\text{ - 1 = }}r\cos \theta $
Now, putting the value of $r$ in the above equation we get,
$
{\text{ - 1 = 2}}\cos \theta \\
{\text{or }}\cos \theta = \dfrac{{ - 1}}{2}{\text{ }} \\
$
Similarly, compare the imaginary parts and put the value of $r$ we get,
$
- \sqrt 3 = 2\sin \theta \\
{\text{or }}\sin \theta = - \dfrac{{\sqrt 3 }}{2} \\
$
Hence, $\sin \theta = - \dfrac{{\sqrt 3 }}{2}{\text{ and }}\cos \theta = \dfrac{{ - 1}}{2}{\text{ }}$
or$\theta {\text{ = }}{60^ \circ }$
Now we can clearly see that the values of both $\sin \theta $ and$\cos \theta $ are negative.
And we know that they both are negative in ${3^{rd}}$ quadrant.
Therefore, the argument is in ${3^{rd}}$ quadrant.
Argument${\text{ = - (18}}{0^ \circ } - \theta {\text{)}}$
$
{\text{ = - (18}}{0^ \circ } - \theta {\text{)}} \\
= {\text{ - (18}}{0^ \circ } - {60^ \circ }{\text{)}} \\
{\text{ = - (12}}{{\text{0}}^ \circ }{\text{)}} \\
{\text{ = - 12}}{0^ \circ } \\
$
Now converting it in $\pi $ form we get,
$
= - {120^ \circ } \times \dfrac{\pi }{{{{180}^ \circ }}} \\
= - \dfrac{{2\pi }}{3} \\
$
Hence, the argument of complex number is $ - \dfrac{{2\pi }}{3}$
Note- Whenever we face such types of questions the key concept is that we simply compare the given
complex number with its general form and then find the value of $x$ and $y$ and put it in the formula
of modulus and argument of the complex number
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

