
Find the modulus and argument of the complex numbers.
\[\dfrac{{5 - i}}{{2 - 3i}}\]
Answer
483k+ views
Hint: First we try to multiply the numerator and denominator with the conjugate of the denominator. Thus we reach such a term that the denominator becomes an integer. Then comparing with \[r\cos \theta + ir\sin \theta \] we get the modulus and argument.
Complete step by step answer:
Consider the given complex number, \[\dfrac{{5 - i}}{{2 - 3i}}\]
By rationalization of given numbers.
\[\dfrac{{5 - i}}{{2 - 3i}}\]
Multiplying the numerator and denominator with the conjugate term of the denominator,
\[ = \dfrac{{(5 - i) \times (2 + 3i)}}{{(2 - 3i) \times (2 + 3i)}}\]
On Simplifying, we get,
\[ = \dfrac{{10 - 2i + 15i - 3{i^2}}}{{{2^2} - {{(3i)}^2}}}\]
Using \[{{\text{i}}^{\text{2}}}{\text{ = ( - 1)}}\], we get,
\[ = \dfrac{{10 + 13i + 9}}{{4 + 9}}\]
On simplifying we get,
\[ = \dfrac{{13 + 13i}}{{13}}\]
On cancelling common terms we get,
\[ = 1 + i\]
We have,
\[\dfrac{{5 - i}}{{2 - 3i}} = 1 + i\]
Let, \[z = 1 + i\] which is of the form, \[x + iy\] and here, \[x = 1\]and \[y = 1\]
Modulus of z \[ = \left| z \right|\] \[ = \sqrt {{x^2} + {y^2}} \]
\[ = \sqrt {{1^2} + {1^2}} \]
\[ = \sqrt 2 \]
Now, to find the argument, we take, \[1 + i = r\cos \theta + ir\sin \theta \]
So, we get by comparing, \[1 = r\cos \theta \] and \[1 = r\sin \theta \] where r is the modulus.
So, we have, \[r = \sqrt 2 \]
Then, \[\sin \theta = \cos \theta = \dfrac{1}{{\sqrt 2 }}\]
So, now, we have both x and y positive, then, \[\theta \] lies in the 1st quadrant.
\[so,\theta = 45^\circ \]
As \[\sin {45^o} = \cos {45^o} = \dfrac{1}{{\sqrt 2 }}\]
Hence, the argument of \[z = \dfrac{\pi }{4}\].
Note: We can also solve the problem with the help of polar coordinates totally. The modulus can be found by comparing real and imaginary parts from the equation, \[1 + i = r\cos \theta + ir\sin \theta \]. Differentiating the real and imaginary and then by comparing them we can find the value of r, the value of r would give us our modulus, and then we can also find \[\theta \] in the same process.
Complete step by step answer:
Consider the given complex number, \[\dfrac{{5 - i}}{{2 - 3i}}\]
By rationalization of given numbers.
\[\dfrac{{5 - i}}{{2 - 3i}}\]
Multiplying the numerator and denominator with the conjugate term of the denominator,
\[ = \dfrac{{(5 - i) \times (2 + 3i)}}{{(2 - 3i) \times (2 + 3i)}}\]
On Simplifying, we get,
\[ = \dfrac{{10 - 2i + 15i - 3{i^2}}}{{{2^2} - {{(3i)}^2}}}\]
Using \[{{\text{i}}^{\text{2}}}{\text{ = ( - 1)}}\], we get,
\[ = \dfrac{{10 + 13i + 9}}{{4 + 9}}\]
On simplifying we get,
\[ = \dfrac{{13 + 13i}}{{13}}\]
On cancelling common terms we get,
\[ = 1 + i\]
We have,
\[\dfrac{{5 - i}}{{2 - 3i}} = 1 + i\]
Let, \[z = 1 + i\] which is of the form, \[x + iy\] and here, \[x = 1\]and \[y = 1\]
Modulus of z \[ = \left| z \right|\] \[ = \sqrt {{x^2} + {y^2}} \]
\[ = \sqrt {{1^2} + {1^2}} \]
\[ = \sqrt 2 \]
Now, to find the argument, we take, \[1 + i = r\cos \theta + ir\sin \theta \]
So, we get by comparing, \[1 = r\cos \theta \] and \[1 = r\sin \theta \] where r is the modulus.
So, we have, \[r = \sqrt 2 \]
Then, \[\sin \theta = \cos \theta = \dfrac{1}{{\sqrt 2 }}\]
So, now, we have both x and y positive, then, \[\theta \] lies in the 1st quadrant.
\[so,\theta = 45^\circ \]
As \[\sin {45^o} = \cos {45^o} = \dfrac{1}{{\sqrt 2 }}\]
Hence, the argument of \[z = \dfrac{\pi }{4}\].
Note: We can also solve the problem with the help of polar coordinates totally. The modulus can be found by comparing real and imaginary parts from the equation, \[1 + i = r\cos \theta + ir\sin \theta \]. Differentiating the real and imaginary and then by comparing them we can find the value of r, the value of r would give us our modulus, and then we can also find \[\theta \] in the same process.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
What organs are located on the left side of your body class 11 biology CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE
