
Find the maximum value of \[{x^m}{y^m}\] where m. n>0 such that \[x + y = a\].
Answer
511.5k+ views
Hint: The maximum value of a function is the place where a function reaches its highest point on a graph.
If the sum of positive variables is constant their product will be maximum, when all the variables are equal to each other.
If the product of positive variables is constant there sum will be minimum, when all variables are equal to each other.
Form values for A.M and G.M are: -
\[A.M = \] arithmetic means \[{a_1} + {a_2} + .... + an\]
\[G.M. = \] Geometric means \[ = {\sqrt[n]{{{a_1}{a_2}a}}_3}....an\]
Where \[{a_1},{a_2}...an\] are n terms
If A.M of set of positive number \[ \geqslant \] G.M of some set of positive numbers
To find the maximum of a function we need to put its derivative equals to zero.
Complete step-by-step answer:
Let \[z = {x^m}{y^n} - \,\,\,\,\,eqn(1)\]
Given \[x + y = a\]
We have \[y = a - x\]
Substitute value of y in \[eqn(i)\], we get
\[z = {x^m}{(a - x)^n}\,\,\,\,\,eqn(2)\]
To find maximum we need to derivate
Equation (2) with respect to x and put it as zero
\[i.e\dfrac{{d > }}{{dx}} = 0\]
Derivation equation (2) with respect to x, using product rule
\[\dfrac{{d > }}{{dx}} = {x^m}n{(a - x)^{n - 1}}\dfrac{d}{{dx}}{(a - x)^n} + {(a - x)^n}m{x^{m - 1}} = 0\]
\[\left[ {\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}} \right]\]
\[\dfrac{d}{{dx}} = - {x^m}n{(a - x)^{n - 1}} + m{(a - x)^n}{x^{m - 1}}\]
\[\left[ {\dfrac{d}{{dx}}(a - x) = - 1} \right]\]
\[ \Rightarrow {(a - x)^n}\,m{\dfrac{x}{x}^m} = {x^m}n\dfrac{{{{(a - x)}^n}}}{{(a - x}}\]
\[{(a - x)^n}\,\]and \[{x^m}\] will be eliminated from both sides
\[ \Rightarrow \dfrac{m}{x} = \dfrac{n}{{a - x}}\]
Cross multiplying we get
\[m \times (a - x) = n \times x\]
\[ma - mx = nx\]
\[ma - nx + mx\]
\[ma - (n + m)x\]
\[x = \dfrac{{ma}}{{m + n}}\,\,\,\,eqn(3)\]
Using \[\,eqn(3)\] in \[\,eqn(2)\], we get
\[z\max = {\left( {\dfrac{{ma}}{{m + n}}} \right)^m}{(a - \dfrac{{ma}}{{m + n}})^n}\]
Now, multiply a to numerator to simplify
\[z\max = {\left( {\dfrac{{ma}}{{m + n}}} \right)^m}{(\dfrac{{ma + na - ma}}{{m + n}})^n}\]
Now, we’ll cancel out common with opposite sign
\[z\max = {\left( {\dfrac{{ma}}{{m + n}}} \right)^m}{(\dfrac{{na}}{{m + n}})^n}\]
Multiply,
\[z\max = \dfrac{{{{(ma)}^m}{{(na)}^n}}}{{{{(m + n)}^m}{{(m + n)}^n}}}\]
\[z\max = \dfrac{{{m^m}{n^n}{a^n}}}{{{{(m + n)}^m}{{(m + n)}^n}}}\]
\[z\max = \dfrac{{{m^n}{n^n}{a^{m + n}}}}{{{{(m + n)}^{m + n}}}}\,\,\,\,\] {Same base power will add}
Note: It can be done with another way as well as
\[A.M \geqslant G.M\]
\[x + y = a \Rightarrow m\left( {\dfrac{x}{m}} \right) + n\left( {\dfrac{y}{x}} \right) = a\]
We know, \[A.M \geqslant G.M\]
\[ \Rightarrow \dfrac{{m\left( {\dfrac{x}{m}} \right) + n\left( {\dfrac{y}{x}} \right)}}{{m + n}}\]\[ \geqslant \sqrt[{m + n}]{{{{\left( {\dfrac{x}{m}} \right)}^m}{{\left( {\dfrac{y}{m}} \right)}^n}}}\]
\[{x^m}{y^n} \leqslant \dfrac{{{a^{m + n}}{m^m}.{n^n}}}{{{{(m + n)}^{m + n}}}}\]
The maximum value is \[\dfrac{{{a^{m + n}}{m^m}{n^n}}}{{{{(m + n)}^{m + n}}}}\]
If the sum of positive variables is constant their product will be maximum, when all the variables are equal to each other.
If the product of positive variables is constant there sum will be minimum, when all variables are equal to each other.
Form values for A.M and G.M are: -
\[A.M = \] arithmetic means \[{a_1} + {a_2} + .... + an\]
\[G.M. = \] Geometric means \[ = {\sqrt[n]{{{a_1}{a_2}a}}_3}....an\]
Where \[{a_1},{a_2}...an\] are n terms
If A.M of set of positive number \[ \geqslant \] G.M of some set of positive numbers
To find the maximum of a function we need to put its derivative equals to zero.
Complete step-by-step answer:
Let \[z = {x^m}{y^n} - \,\,\,\,\,eqn(1)\]
Given \[x + y = a\]
We have \[y = a - x\]
Substitute value of y in \[eqn(i)\], we get
\[z = {x^m}{(a - x)^n}\,\,\,\,\,eqn(2)\]
To find maximum we need to derivate
Equation (2) with respect to x and put it as zero
\[i.e\dfrac{{d > }}{{dx}} = 0\]
Derivation equation (2) with respect to x, using product rule
\[\dfrac{{d > }}{{dx}} = {x^m}n{(a - x)^{n - 1}}\dfrac{d}{{dx}}{(a - x)^n} + {(a - x)^n}m{x^{m - 1}} = 0\]
\[\left[ {\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}} \right]\]
\[\dfrac{d}{{dx}} = - {x^m}n{(a - x)^{n - 1}} + m{(a - x)^n}{x^{m - 1}}\]
\[\left[ {\dfrac{d}{{dx}}(a - x) = - 1} \right]\]
\[ \Rightarrow {(a - x)^n}\,m{\dfrac{x}{x}^m} = {x^m}n\dfrac{{{{(a - x)}^n}}}{{(a - x}}\]
\[{(a - x)^n}\,\]and \[{x^m}\] will be eliminated from both sides
\[ \Rightarrow \dfrac{m}{x} = \dfrac{n}{{a - x}}\]
Cross multiplying we get
\[m \times (a - x) = n \times x\]
\[ma - mx = nx\]
\[ma - nx + mx\]
\[ma - (n + m)x\]
\[x = \dfrac{{ma}}{{m + n}}\,\,\,\,eqn(3)\]
Using \[\,eqn(3)\] in \[\,eqn(2)\], we get
\[z\max = {\left( {\dfrac{{ma}}{{m + n}}} \right)^m}{(a - \dfrac{{ma}}{{m + n}})^n}\]
Now, multiply a to numerator to simplify
\[z\max = {\left( {\dfrac{{ma}}{{m + n}}} \right)^m}{(\dfrac{{ma + na - ma}}{{m + n}})^n}\]
Now, we’ll cancel out common with opposite sign
\[z\max = {\left( {\dfrac{{ma}}{{m + n}}} \right)^m}{(\dfrac{{na}}{{m + n}})^n}\]
Multiply,
\[z\max = \dfrac{{{{(ma)}^m}{{(na)}^n}}}{{{{(m + n)}^m}{{(m + n)}^n}}}\]
\[z\max = \dfrac{{{m^m}{n^n}{a^n}}}{{{{(m + n)}^m}{{(m + n)}^n}}}\]
\[z\max = \dfrac{{{m^n}{n^n}{a^{m + n}}}}{{{{(m + n)}^{m + n}}}}\,\,\,\,\] {Same base power will add}
Note: It can be done with another way as well as
\[A.M \geqslant G.M\]
\[x + y = a \Rightarrow m\left( {\dfrac{x}{m}} \right) + n\left( {\dfrac{y}{x}} \right) = a\]
We know, \[A.M \geqslant G.M\]
\[ \Rightarrow \dfrac{{m\left( {\dfrac{x}{m}} \right) + n\left( {\dfrac{y}{x}} \right)}}{{m + n}}\]\[ \geqslant \sqrt[{m + n}]{{{{\left( {\dfrac{x}{m}} \right)}^m}{{\left( {\dfrac{y}{m}} \right)}^n}}}\]
\[{x^m}{y^n} \leqslant \dfrac{{{a^{m + n}}{m^m}.{n^n}}}{{{{(m + n)}^{m + n}}}}\]
The maximum value is \[\dfrac{{{a^{m + n}}{m^m}{n^n}}}{{{{(m + n)}^{m + n}}}}\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
