
Find the maximum slope of the curve $y = - {x^3} + 3{x^2} + 2x - 27$.
Answer
579k+ views
Hint: Slope of the curve is given by $m = \dfrac{{dy}}{{dx}}$. So, in this problem first we will find $\dfrac{{dy}}{{dx}}$. To find the maximum value of slope, we will use a second derivative test. Let us say $\dfrac{{dy}}{{dx}} = f\left( x \right)$. Now we will find the first derivative $f'\left( x \right)$. Then, we will equate $f'\left( x \right)$ to zero for finding critical points. Now we will find the second derivative $f''\left( x \right)$. Then, we will find the value of the second derivative at the critical points. If this value is negative then we can say that the slope is maximum.
Complete step-by-step answer:
Let us find slope of the curve $y = - {x^3} + 3{x^2} + 2x - 27.$ Slope of the curve is $m = \dfrac{{dy}}{{dx}}$. Therefore,
$\dfrac{{dy}}{{dx}} = - 3{x^2} + 6x + 2$. Note that here we used the differentiation formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$.
Let us say $\dfrac{{dy}}{{dx}} = f\left( x \right)$. Therefore, $f\left( x \right) = - 3{x^2} + 6x + 2$.
Now we will find the first derivative $f'\left( x \right)$. Therefore, $f'\left( x \right) = - 6x + 6$.
Now we will equate $f'\left( x \right)$ to zero for finding critical points. Therefore,
$
f'\left( x \right) = 0 \\
\Rightarrow - 6x + 6 = 0 \\
\Rightarrow - 6\left( {x - 1} \right) = 0 \\
\Rightarrow x - 1 = 0 \\
\Rightarrow x = 1 \\
$
Therefore, the critical point is $x = 1$.
Now we are going to find the second derivative of$f\left( x \right)$ and its value at a critical point. Therefore,
$f''\left( x \right) = - 6$.
For$x = 1$, we get $f''\left( x \right) = - 6 < 0$.
Note that here $f''\left( x \right)$ is negative for all $x$ because $f''\left( x \right)$ is constant.
Here the value of the second derivative is negative at a critical point. So, we can say that the slope is maximum.
To find the maximum value of slope, we will put $x = 1$ in $f\left( x \right)$. Therefore, the maximum slope is
$\left( { - 3} \right){\left( 1 \right)^2} + 6\left( 1 \right) + 2 = 5.$
Hence, the maximum slope of the given curve $y = - {x^3} + 3{x^2} + 2x - 27$ is $5$.
Note: To find the maxima of slope of the curve, put $x = 1$ in the given equation of curve. We get, $y = - {\left( 1 \right)^3} + 3{\left( 1 \right)^2} + 2\left( 1 \right) - 27 = - 23$. Therefore, the slope is maximum at point $\left( {1, - 23} \right)$. The point$\left( {1, - 23} \right)$ is called the maxima of the slope. In the second derivative test, if the value of the second derivative is positive at a critical point then we will get the minimum value of a function.
Complete step-by-step answer:
Let us find slope of the curve $y = - {x^3} + 3{x^2} + 2x - 27.$ Slope of the curve is $m = \dfrac{{dy}}{{dx}}$. Therefore,
$\dfrac{{dy}}{{dx}} = - 3{x^2} + 6x + 2$. Note that here we used the differentiation formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$.
Let us say $\dfrac{{dy}}{{dx}} = f\left( x \right)$. Therefore, $f\left( x \right) = - 3{x^2} + 6x + 2$.
Now we will find the first derivative $f'\left( x \right)$. Therefore, $f'\left( x \right) = - 6x + 6$.
Now we will equate $f'\left( x \right)$ to zero for finding critical points. Therefore,
$
f'\left( x \right) = 0 \\
\Rightarrow - 6x + 6 = 0 \\
\Rightarrow - 6\left( {x - 1} \right) = 0 \\
\Rightarrow x - 1 = 0 \\
\Rightarrow x = 1 \\
$
Therefore, the critical point is $x = 1$.
Now we are going to find the second derivative of$f\left( x \right)$ and its value at a critical point. Therefore,
$f''\left( x \right) = - 6$.
For$x = 1$, we get $f''\left( x \right) = - 6 < 0$.
Note that here $f''\left( x \right)$ is negative for all $x$ because $f''\left( x \right)$ is constant.
Here the value of the second derivative is negative at a critical point. So, we can say that the slope is maximum.
To find the maximum value of slope, we will put $x = 1$ in $f\left( x \right)$. Therefore, the maximum slope is
$\left( { - 3} \right){\left( 1 \right)^2} + 6\left( 1 \right) + 2 = 5.$
Hence, the maximum slope of the given curve $y = - {x^3} + 3{x^2} + 2x - 27$ is $5$.
Note: To find the maxima of slope of the curve, put $x = 1$ in the given equation of curve. We get, $y = - {\left( 1 \right)^3} + 3{\left( 1 \right)^2} + 2\left( 1 \right) - 27 = - 23$. Therefore, the slope is maximum at point $\left( {1, - 23} \right)$. The point$\left( {1, - 23} \right)$ is called the maxima of the slope. In the second derivative test, if the value of the second derivative is positive at a critical point then we will get the minimum value of a function.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

